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Abstract

Continuous integration produces detailed logs about the status and results of the various
tools involved in the build. These build logs are a valuable data source for developers and
researchers to inspect test results, to check the duration of build steps and to understand
the cause of a build failure. However, build logs are very verbose, at best semi-structured
and their structure differs highly between projects. This makes it hard to process and
analyze them. In this thesis, we evaluate and compare three different techniques that
aim to retrieve specified log parts (chunks) from a build log, namely program synthesis
by example, textual similarity and search keywords. We conduct an empirical study by
comparing these techniques on our manually labeled LogChunks data set of 797 Travis CI
build logs from a broad range of 80 projects. Our findings show that none of the three
techniques in general outperforms the others. We discuss under which circumstances each
technique performs best and provide a recommendation on when developers or researchers
should use which technique.
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1 Introduction

Continuous Integration (CI) has become a common practice in software engineering [1].
Many software projects use CI [1–3] to detect defects early [4, 5] and to improve developer
productivity [1, 6] and communication [7]. A build on a CI server typically compiles and
packages the software, executes tests [3] and performs various kinds of static analyses [8].
CI builds produce logs which report the results of the steps within the build. These

build logs contain valuable information for developers and researchers. Developers examine
log statements of time measurements to track how steps of the build process perform.
Researchers collect the commands triggering different build steps to reverse engineer the
build configuration when only the log is available to them. Both groups analyze build logs
for descriptions of compiler errors or failed tests to uncover why a CI build failed [3, 9, 10].
The problem is, that build logs are verbose and long [3], making them inadequate for

direct consumption. Therefore, developers and researchers can only efficiently use the
information within build logs if they can adequately retrieve those parts (chunks) of the
log that describe the targeted information.

There are different techniques to retrieve information chunks from CI build logs. Beller
et al. use regular expressions to analyze the reasons of build failures from Travis CI logs [3].
Vassallo et al. wrote a custom parser for build logs to gather information for build repair
hints [11]. Recently, Amar et al. reduced the number of build log lines for a developer to
inspect by creating a diff between the logs from a failed and a successful build [12].

These approaches have various strengths and weaknesses: Regular expressions are exact
but difficult to maintain. They are developed by looking at a few exemplary build logs.
Updating regular expressions whenever new cases are introduced is a tedious and error-
prone task [13]. Custom parsers are powerful though fragile towards changes in the log
structure. The structure of build logs changes from project to project [2] as it depends on
the tools and the environment used. Taking a diff between the logs of failed and successful
builds can reduce the information to be processed, but the imprecise output needs to be
interpreted by a developer [12].

At the moment there is only anecdotal evidence on the performance of these techniques
and on when a technique should be preferred over other alternatives. Developers and
researches currently have little support when choosing which technique to use for a task.
The goal of this thesis is to investigate different chunk retrieval techniques for build

logs and describe under which circumstances certain techniques can be recommended
over others. We aim to characterize different chunk retrieval techniques, as well as the
information retrievable from CI build logs. For Research Question 1 (RQ1), we analyze
which criteria influence the suitability of a chunk retrieval technique for CI build logs.

We implement and evaluate three chunk retrieval techniques:

• program synthesis by example using the Microsoft PROSE library (referred to as
PBE),
• a common text similarity approach (referred to as CTS), and
• keyword search (referred to as KWS).

1



1 Introduction

RQ2 asks under which conditions PBE, CTS and KWS are suited to retrieve information
from continuous integration build logs. RQ2 is refined into sub-questions along with the
criteria resulting from RQ1 and compares their instantiations for the three techniques:
how many training examples a technique needs to perform best (RQ2.1), how structurally
diverse the examples can be (RQ2.2) and how accurate the retrieved output is (RQ2.3).
To evaluate PBE, CTS and KWS we create a data set, called LogChunks, which encompasses
about 800 log files from 80 repositories. Each log is labeled with the log part describing
the reason a build failed, keywords to search for this log part and a categorization of the
labeled log part according to its structural representation within the log.
Our study of the three techniques on LogChunks shows that

• PBE yields very accurate results when trained with two examples from a single
structural category.

• CTS shows the best average precision, though precision and recall of a retrieval is
hard to determine from the given result. A small increase in the number of training
examples has no noticeable influence. Fewer structural categories improve precision
and recall of the retrieval.

• KWS has the highest recall of all techniques, however much lower precision. It is the
technique with the best recall when multiple structural categories are present in the
training examples.

We recommend PBE for use cases where the desired information is always represented in
the same structural way and high confidence in precision and recall of the chunk retrieval
is required. CTS is well suited when the representation of the desired information varies
slightly and the output of the chunk retrieval is further processed by a human. In cases
where the textual representation of the desired information in the log is unpredictable or
varies greatly, KWS is the best technique to choose. However, its low precision requires a
human to interpret the output of the chunk retrieval.

Our work contributes:

• A tool unifying several chunk retrieval techniques namely:
– program synthesis from examples using the Microsoft PROSE library (PBE),
– a common information retrieval approach using text similarity (CTS), and
– a keyword search approach (KWS).

• A validated data set of about 800 logs from failed Travis CI builds manually-labelled
with:

– the substring of the log describing the reason the build failed,
– keywords we would use to search for these substrings, and
– a categorization of the substrings according to their structural representation

within the build log.
• Recommendations for the configuration of each of the investigated chunk retrieval

techniques.
• Guidelines on choosing a suitable chunk retrieval technique.
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This thesis first presents an overview of related research, spanning from CI, build log
analysis and augmentation to system log processing. Chapter 2 also presents existing
work on information extraction and retrieval techniques, as well as program synthesis
from examples. Next, Chapter 3 characterizes chunk retrieval techniques and retrievable
information from CI build logs. It also introduces the three investigated techniques PBE,
CTS and KWS. Chapter 4 describes the creation of the LogChunks data set collected from
failed Travis CI build logs, including the labeling and the validation process. Chapter 5
explains the empirical comparison of the three techniques on LogChunks and presents the
study results. Chapter 6 discusses the implications of the study results and recommendations
on when PBE, CTS and KWS are most suitable. Lastly, Chapter 7 concludes and gives an
overview of further research opportunities.
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2 Background and Related Work

This chapter presents various research works adjacent or foundational to our work. The
first section presents existing work in the field of continuous integration (CI) and showcases
how researchers analyze build logs. In the second section we describe the existing methods
which are the foundation for the chunk retrieval techniques we investigate.

2.1 Continuous Integration and Build Logs

We describe existing studies about CI to show that CI is a relevant topic within the
software engineering research community. We explain how researchers gather information
about CI usage in software projects through build log analysis and why the chunk retrieval
techniques we investigate simplifies their data collection. This section moves on to past
works about augmenting build logs to make it easier for developers to inspect them. The
presented approaches are related to and can benefit from the techniques we analyze in this
thesis. Further, we classify build logs as semi-structured data and differentiate our work
from system log analysis.

2.1.1 Continuous Integration

The first paragraphs of this section present the results of past research into CI: its influence
on the software engineering processes, the reasons for CI builds to fail and the role of
testing and of static analysis in CI builds. Later we describe how researchers obtain the
data sets these works are based on. We show how they analyze build logs and why the
chunk retrieval techniques we investigate can support them to broaden their studies.

Motivation for CI and Impact of CI Why teams choose to use CI and its impact on
the software development process is explored by several existing works. Hilton et al. [14]
investigate the motivations of developers to use CI through several surveys. They find that,
developers use CI to ensure consistency and quality across different execution environments
and increase confidence in the code they deploy. Hilton et al. [1] also analyze how and
why open source projects use CI. They observe CI usage in a broad range of projects, it
supports developers to catch bugs earlier and to shorten release cycles. Stahl and Bosch [2]
provide a review of literature on automatic build environments in industry projects. They
propose a descriptive structure to model build flows, which they found to be highly different
from project to project. Vasilescu et al. [4] analyze a broad rage of open source projects
written in popular languages on GitHub. They compare the usage of CI with the successful
merges of pull requests and find that CI increase the number of successful merges and
allows the team members to uncover more bugs. In a recent study, Vasallo et al. [15]
interview developers on how they determine why a CI build failed and model how these
developers resolve failures. Vasallo et al. find that, the first and most important steps
when developers want to fix a build failure is to locate the error within the build log. Then

5



2 Background and Related Work

the developers use the additional information provided with and around the error message
to understand the details of the failures. This shows that the build log is a central source
of information about a CI build.

Build Failures in CI Various researchers look into why CI builds fail and into the
impact of build failures on the development workflow. Seo et al. [9] find that a small
group of error types such as dependency mismatches are the most prominent cause of
build failures at Google. In addition, they notice that most failures are resolved within
two builds. Rausch et al. [16] analyze CI builds of open source Java projects and find
that most builds fail because of failing tests. For most projects, over half of the failed
builds follow a previous failed build. Rausch et al.’s data shows that most failures occur in
the second half of the build runtime, which can cause long delays in the feedback loop,
especially when builds are automatically retried upon failure. Vassallo et al. [10] compare
open source projects in Java to industrial ones. They determine that testing failures are
more common than compilation errors. Open source builds fail most often because of unit
tests, whereas release preparations are the primary cause in industrial projects.

Static Analysis and Testing in CI Automated static analysis tools are the focus of
Zampetti et al. [8] in their study of Java projects from GitHub. Their results show that
static analysis is responsible for a small amount of build failures and mainly responsible
for warned builds. Almost all analyzed projects use custom configurations for the static
analysis, however the configuration rarely changes. Failures because of static analysis
warnings are observed to be fixed in a short time frame. Beller et al. [3] show that testing is
central to continuous integration when evaluating Travis CI logs for Java and Ruby builds.
They observe a high variation between programming langues, in the kind and number of
tests which are run, as well as how often tests fail. The low failure rates on the CI server
hint at code being tested before it is sent to the server.

Data Sets Powering CI Research The works presented in this section are based on
either developer surveys or data sets containing build metadata or build logs. Seo et al. [9]
and Vassallo et al. [10] based their analyses on sets of build logs collected from industry
partners. Beller et al. [17] created the TravisTorrent data set providing access to build
metadata from more than 1,000 projects from Travis CI [18]. TravisTorrent was the basis
for several of the works mentioned in this section [3, 8, 10, 16]. Ghaleb et al. [19] aim
to identify noise in build breakage data. They classify build failures from TravisTorrent
according to whether they were caused by an environmental failure or caused by a developer
change. They also identify cascading build failures created by existing unfixed errors and
allowed failures, whose results were later labeled by developers to be ignored. About half of
the failed builds in TravisTorrent fall into at least one of these categories. When regarded
as noise they considerably impact observations reported by other works modeling build
breakages.
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2.1 Continuous Integration and Build Logs

Build Log Analysis in CI Research Several of the works we mentioned until now
analyze build logs to obtain information about the CI builds. For Seo et al. [9] the build
logs are the primary data source for their study. They develop a custom parser to classify
error messages reported by Java and C++ builds. Vassallo et al. [10] analyze collected
build logs by extracting error messages using regular expressions. The regular expressions
search for keywords identified in a manual analysis. The analysis of Ghaleb et al. [19]
starts with manual categorization of build logs. They select keywords and strings that
identify their targeted categories and code a script to automatically classify logs based on
these keywords. Beller et al. [3] focus their analysis on Java and Ruby build logs for which
they build custom parsers with regular expressions to extract the reason a build failed.

Supporting Log Analysis with Chunk Retrieval To leverage the valuable informa-
tion within build logs the researchers presented in this section build parsers and regular
expression-based programs. This task of retrieving specific chunks of text from the build
logs can be solved by the chunk retrieval techniques we compare in this thesis. Our results
can support researchers in choosing a suitable technique for their data set of build logs
and the chunks they want to retrieve. By relieving them from building custom parsers we
enable them to cover a much wider range of languages and build tools in their studies.

2.1.2 Augmentation of Build Logs

Build logs are a valuable data source for developers to find out why their build failed.
Several researchers are looking into supporting developers to process the verbose build
logs. Vassallo et al. [11] try to shorten the time it takes developers to understand build
logs. They parse Maven [20] build logs into a structured representation and create hint
generators. The hint generators leverage this structured access to the information within
the build log to propose fixes. For example, one of the hint generators queries stack overflow
for discussions related to why the build failed. In a qualitative study they observed that
highlighting the locality and context of an issue is helpful to programmers. Their tool
BART is published as a Jenkins Plugin [21]. The chunk retrieval techniques we compare
in this thesis can be used to fill similar structured representations with information from
build logs. As they simplify the construction of parsers they would enable developers and
researchers to cover a wider array of build tools, which is the main influence factor on the
structure of a build log.
Amar et al. [12] compare different approaches to reduce the portions of a log that a

developer has to inspect. Their techniques remove lines that appear both in logs from
passing and failing builds and use a modified Term Frequency Inverse Document Frequency
(TF-IDF) weighting to identify term vectors likely to occur with failures. Their diff
technique can be interpreted as a chunk retrieval technique, where the targeted information
is defined by the past failures used as basis for the weighted term vectors.

Travis itself already provides build log augmentation in the form of a basic structuring of
the build logs within their log viewer using log folds [22]. They add fold identifiers around
common commands and setup or teardown build phases and collapse the contained lines
by default.
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2 Background and Related Work

2.1.3 Build Logs as Semi-Structured Data

Serge Abiteboul introduces a theory of semi-structured data in his report from 1997 about
integrating data from several sources [23]. He proposes essential characteristics of semi-
structured data. In this section, we show how five of these map to the context of build
logs.
The structure of build logs

• is implicit. We might not have access to explicit structuring elements or an explicit
structure description. Computation is required to infer the present structure.

• is irregular. Changes in the build process or execution environment might change
the structure of a build log. We observed this in the logs we collected for the
LogChunks data set, where for the same repository and build configuration some logs
had double new line characters without any noticeable explanation. Figure 2.1 and
Figure 2.2 present an example of this.

• is partial. Some parts are highly structured by e.g. special characters. Other parts
are unstructured, such as natural language text in error messages.

• can be described with an analytical data guide rather than a predefined schema.
There is no fixed specification on how build tools structure their output. We later
extract structuring patterns in the produced output.

• has a rapidly evolving schema. Modifications in the build configuration can
change the tools involved in the build and therefore the composition of the build log.
Previous work indicates that some projects change their CI configuration often [1]
and software tools adapt their log messages over time [24].

Abiteboul proposes an approach to overlay the semi-structured data with a structured
layer. The additional layer can answer queries and give access to the semi-structured data
relevant to a query. In contrast to that, this thesis takes a look at techniques to gather a
specific, pre-specified information without the need to parse, understand or estimate the
whole structure of a log.

Figure 2.1: Excerpt from a build log showing a WarningMessage chunk.

Figure 2.2: Excerpt from a build log showing a differently formatted WarningMessage chunk.

8



2.2 Foundational Techniques

1 2008 -11 -09 20:46:55 ,556 INFO dfs. DataNode$Packet -
↪→ Responder : Received block blk_3587508140051953248 of
↪→ size 67108864 from /10.251.42.84

2 2008 -11 -09 20:49:46 ,764 WARN PacketResponder 0 for block
↪→ blk\ _3587508140051953248 terminating

Figure 2.3: System Log Statements. Example adapted from [25].

2.1.4 System Log Analysis

A related field of log processing is the processing of system log files produced during
runtime. A main difference between build logs and system logs is that system logs are
fundamentally structured through events. Each line in a log file represents one event with
a set of fields: timestamp, verbosity level and raw message content [25]. Figure 2.3 shows
example lines from a system log.

The first goal in parsing system log files is to separate constant and variable parts within
a log message [25, 26]. Next, the log messages are clustered into log events, unifying
messages with identical constant parts and varying parameters. The output of a log parser
is a structured log, composed of a list of timed events and the corresponding parameter
values [27]. This structured log is then the input to various machine learning and data
mining processes. Researchers mine patterns for operational profiling [28], debugging [29],
performance analytics or anomaly detection [26]. Xu et al. [30] leverage the connection of
log statements to the source code producing them to separate messages into constant and
variable parts more accurately.

The techniques developed for system log analysis can also be applied to build logs. One
example is comparing execution traces to reference traces of intended behavior to detect
anomalies. Amar et al. [12] employed a similar approach to detect relevant lines in build
logs.
Classic log parsers interpret the whole log file into a sequence of events. A similar

approach could also be applied to build logs to determine the sequence of executed build
steps or phases. In this thesis we take a different approach and focus on extracting a single
specified information from the build log as a whole with chunk retrieval techniques. Chunk
retrieval techniques are used as a part of log parsing to retrieve the values of variable parts
in a log message, e.g. by using regular expressions [26, 30].

2.2 Foundational Techniques

The techniques we investigate are based on existing methods of Programming by Ex-
ample, information extraction and information retrieval. This section presents different
Programming by Example resources surrounding the PROSE library. We explain its generic
program synthesis algorithm and how PROSE synthesizes text extraction programs, the
foundation of PBE. In addition, we describe how chunk retrieval can be employed as a part
of presented information extraction approaches. We introduce how information retrieval
techniques, the basis for CTS, are used to improve software development.

9



2 Background and Related Work

2.2.1 Program Synthesis by Example

Programming by Example enables end users to automate repetitive tasks. The user
provides examples for the input and the corresponding output and a synthesis algorithm
tries to create the program intended by the user. This section introduces the theoretical
foundations of the program synthesis algorithm of the PROgram Synthesis using Examples
(PROSE) framework [31]. The PROSE framework is developed by Microsoft Research.
Next, this section presents the FlashExtract DSL, which defines text extraction tasks
within PROSE and is the basis for the implementation of our chunk retrieval technique
PBE. Finally, we cover additional applications and extensions of the PROSE program
synthesis and alternative research on generating regular expressions from examples.

FlashMeta: Inductive Program Synthesis The FlashMeta framework presented
by Polozov and Gulwani [32] is the backbone of the program synthesis in the Microsoft
PROSE framework. FlashMeta separates the inductive synthesis algorithm from the
domain specific capabilities of the desired program by encoding the possible program space
in a domain specific language (DSL). The user specifies the desired program behavior by
providing in/output examples (I/O examples). FlashMeta uses witness functions, provided
by the DSL, to divide the synthesis into smaller subtasks. For each of these subtasks it
enumerates all possible programs that solve the subtask consistent with the set of I/O
examples. A program is consistent with a set of I/O examples if, for each input example,
it produces the corresponding output [33]. The possible subprograms are joined and stored
in a version space algebra (VSA) [33]. This a tree structure, which space-efficiently saves
candidate programs for tasks by sharing common subexpressions. Next, FlashMeta ranks
the enumerated programs according to which ones the user most likely intended. The
DSL also provides the ranking characteristics. From the ranked VSA, FlashMeta can then
return a ranked list of complete programs consistent with the user’s example.

In addition to I/O examples of the intended program, the user can also provide examples
with only input or negative input examples. Negative input examples should not be
processed by the synthesized program.
The different applications of PROSE presented in the following paragraphs were all

eventually implemented as DSLs for the FlashMeta synthesis algorithm.

FlashExtract: Data Extraction by Example Le et al. [34] developed FlashExtract
as a DSL for the Microsoft PROSE framework. It enables a user to define text extraction
programs for text, websites and spreadsheets by giving I/O examples. FlashExtract’s
instantiation for text synthesizes extraction programs from semi-structured text based on
regular expressions. Users can extract multiple fields and structure them with hierarchy
and sequence. FlashExtract synthesizes programs to extract each of the fields leveraging
the information about hierarchical containment and sequentiality. It eliminates the need
for the user to understand the entire structure of the processed document and decreases
the effort of developing a suitable extraction program.
The text instantiation of FlashExtract models the extraction of a single substring as a

pair of two cut positions. A position is either specified by an absolute character index or by
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2.2 Foundational Techniques

1 let s = v in let s = PosToEndRegion (s, RegexPosition (s,
↪→ RegexPair ("Colon◦Line Separator ", "ALL CAPS"), 1)) in
↪→ StartToPosRegion (s, RegexPosition (s, RegexPair ("ε",
↪→ "Line Separator◦Line Separator "), 1))

Figure 2.4: Text extraction program synthesized by FlashExtract.

a pair of two regular expressions. The first regular expression matches the substring directly
before the characterized position, the second regular expression matches the substring
directly after. A regular expression in FlashExtract is a concatenation of tokens, e.g.
standard character classes or string literals frequently occurring in the input examples.
Figure 2.4 shows a text extraction program synthesized by FlashExtract. This program
defines the first position as after a colon followed by a newline character and before a
piece of text with all capital letters. It defines the second position as before two newline
characters.

Apart from automatic completion in Excel spreadsheets [35], FlashExtract is the basis for
two other Microsoft product features: Microsoft’s system log analysis tool Azure Monitor
lets users define custom log fields [36]. The ConvertFrom-String function in PowerShell
allows a user to specify an example template to extract hierarchical data from a text
document [37].
We apply the text instantiation of FlashExtract to the domain of build logs with our

chunk retrieval technique PBE.

Other Applications of Program Synthesis by Example Gulwani and Harris apply
a less generic predecessor of the FlashMeta framework to string manipulation within
spreadsheets [38] and spreadsheet transformations [39].

Rolim et al. [40] use code edits as examples to learn automatic program transformations.
Their DSL for PROSE abstracts over variables and subexpressions by describing rewrite
rules applied to the abstract syntax tree. These synthesized transformations can be used
to propose fixes for student assignments based on corrections from other students and can
also be used to automate repetitive refactoring tasks.
Raza and Gulwani [41] present an automated algorithm that attempts to predict data

extraction programs only from input examples. Their tool can split system log statements
into table columns or extract data from lists on webpages into spreadsheets.

In program synthesis shorter and simpler program often receive a better ranking. By also
taking the execution traces of the program candidates into account, Ellis and Gulwani [42]
improve the accuracy of the PROSE program learner even further. For example, a program
that extracts overlapping substrings is ranked lower than a program without overlapping
extractions. They also weigh the produced output of applying a program to input only
examples and prefer programs which produce output structurally similar to provided output
examples.

User Interaction with Programming by Example I/O examples are an ambiguous
specification of a program. As such, user confidence in the correctness of the synthesized
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program is important for a wide adoption of Programming by Example-based systems [43].
Miller and Myers [44] uncover outliers in input data provided to a Programming by Example
text editing task. For the PROSE framework, Mayer et al. [45] compare two approaches for
disambiguation by the user. With their first approach, the user can browse lower ranked
program candidates in a tree-like natural language transformation of the constructed VSA.
The second approach actively asks the user to resolve ambiguous output possibilities for
input only examples.

Further Approaches to Regular Expression Generation from Examples Bartoli
et al. [46] leverage genetic programming to generate regular expressions based on user
examples. Their approach also represents the regular expressions in a tree structure and
mutates them to maximize extraction accuracy on the provided examples while minimizing
the length of the regular expression. Their evaluation shows that their algorithm is on
average faster and more accurate than humans [47]. The WHISK system by Stephen
Soderland [48] learns text extraction regular expressions for semi-structured text. The
system interleaves the learning process with example annotation and reduces the number
of required examples by presenting examples that eliminate ambiguities between learning
candidates.

2.2.2 Information Extraction

Information extraction techniques aim at structuring unstructured information to support
subsequent processing. We present existing approaches to extract information from semi-
structured documents and how these approaches differ and can benefit from chunk retrieval.
The PADS project [49] is centered around declaring grammars for the information

contained in semi-structured documents. Based on this declarative data description various
tools are generated. This includes tools such as format converters, e.g. to XML, data
adaptors to other tools, statistical analyzers and visualizers. Manually defined PADS
grammars eliminate the need to develop a custom data extraction parser. Xi and Walker
developed ANNE [50], which can infer context-free PADS grammars from a few user
annotations and the raw document data. Fisher et al. [51] fully automated the generation
of PADS grammars. They split the data into chunks, documents or lines, and further
into tokens. Parentheses are used to infer hierarchical structure information. The system
guesses grammar operators unifying single tokens or subexpressions, scores the resulting
grammars and applies appropriate rewrite rules to refine the candidate grammars.
The IEPAD tool created by Chang et al. [52] automatically identifies data extraction

patterns in semi-structured web pages, without requiring user-labeled training examples.
They split the documents into tokens, discover repetitive patterns using occurrence-counting
suffix trees and select the most regular and compact patterns to define extraction.
Smith and Lopez [53] extract structured information from sets of semi-structured doc-

uments that contain similar information but which are structured differently. The user
provides rules for each piece of information, detailing in which section of the document
it might be present. Identifying keywords and regular expressions determine whether the
information is present and where it starts and ends.
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These information extraction approaches support parsing and structuring of entire files.
We investigate chunk retrieval techniques which do not aim at inferring the whole structure
of a build log. Instead, chunk retrieval focusses on extracting one specific information
characterized by the user.

2.2.3 Information Retrieval

The process of automatically selecting unstructured documents related to a given search
query is called information retrieval [54]. In information retrieval, algorithms try to
determine the general topic or conceptual information of a document. Usually this is done
by preprocessing the documents, transforming them to a term-by-document matrix and
weighing the terms with TF-IDF [55]. On the matrix the algorithms apply a similarity
comparison such as, for example, vector space models to calculate the similarity of the
different documents to each other [56].

Information retrieval techniques are leveraged to improve software engineering in various
areas. Antoniol et al. [57] query manual pages and requirements with program identifiers
to create trace links between code and documentation. The same task is addressed by
Marcus et al. [58], who also incorporate source code comments into their query. Panichella
et al. [56] and Runeson et al. [59] apply similar information retrieval techniques to detect
duplicated bug reports. Salton et al. [60] retrieve text parts relevant for a given user query
by calculating global document similarity scores and refining the output through local
passage similarity. They also calculate similarity with term vectors. Our chunk retrieval
technique CTS uses the same approach of term vectors to identify which lines to extract
from a log file.
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3 Chunk Retrieval Techniques for Build
Logs

This chapter introduces the concept of chunk retrieval techniques. We use these techniques
to extract text chunks from build logs that represent a specific, targeted information. This
chapter first presents how a build log, which we take as input to the chunk retrieval, is
created by a continuous integration (CI) build. Next, the chapter describes retrievable
information chunks in build logs and gives examples found in Travis CI build logs. We
illustrate why it is useful to extract the presented information chunks. The following
section introduces our concept of chunk retrieval techniques. We present the three chunk
retrieval techniques we investigate in this thesis: program synthesis by example (PBE),
common text similarity (CTS) and keyword search (KWS).

Build Log
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Build Tool Information

*
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Chunk Retrieval Technique

applies >
*

1

< analyzes

1

*

1

desired
output >

*

presents >

1

*Information Chunk

< produces1
1

Chunk Retrieval Run

< contained in

*
1

Retrieval Output

Figure 3.1: The different entities related to a CI build.

3.1 Characteristics of a Build Log

The idea of CI is to catch errors early by integrating software changes fast and often [61].
Companies link a CI server, e.g. Travis CI, to their source code repository. After making a
change, the developer commits and pushes the new version of the code to the repository.
A push on specific branches or the creation of a pull request triggers a CI build.

A CI build typically runs through the following stages:

• Pulling the new, changed version of the source code into the build environment.
• Building the software, i.e. compiling and packaging it [62].
• Running static analysis tools [8].
• Running automated tests [3].
• Deployment of the build artifact [63].

However, these are only typical stages and there is a high variability in the CI build
processes of different software projects [2]. Some smaller projects might use CI to just

15



3 Chunk Retrieval Techniques for Build Logs

ensure their code compiles as a minimal check before reviewing a pull request. Other
projects might have various stages of extensive automated testing.
Software tools involved in the build write out log messages to the console. They

communicate progress updates, error messages and warning messages to the user [24]. We
refer to to the concatenation of this output as build log. The structure of their output is
chosen by every tool themselves. Many have implicit or explicit structuring rules, some
adhere to predefined standards like RSpec or PHPUnit [64, 65]. Figure 3.2 shows how
different tools contribute to the whole build log.

CI Build Log 

xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx 
xxxxxxxxxxxx

Orchestrating 
Software 

e.g. Travis

git

bundler

PHPunit Selenium

Linter

console.log()

printf()

Console.WriteLine()

Figure 3.2: Contribution of different tools to a build log.

When analyzing build logs we do not necessarily have access to the exact build configu-
ration, describing which tools are used in which order. We also do not necessarily have
access to a useable definition of the output structure of a specific tool. Therefore, build
logs are semi-structured, as described in Section 2.1.3.

3.2 Information Chunks in Build Logs

CI build logs contain a great amount of information about the CI build they correspond
to. This section defines our concept of information retrievable from a CI build log. We use
the introduced terms throughout the following sections and chapters to discuss about the
characteristics of chunk retrieval techniques. To illustrate why chunk retrieval from build
logs is useful, we present examples of information contained in Travis CI build logs and
describe use cases for developers and researchers to retrieve them.

Central to this explanation is the piece of information possibly retrievable from a build
log. Possibly, because an information is not necessarily present in every build log. If it is
present, we call the text part which describes the information the information chunk or in
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short chunk. Each chunk is always contained in a specific build log. Figure 3.1 presents
the relation between an information, a chunk and other entities involved in a CI build.

Chunks can be hierarchically ordered, determined by how their textual representations
contain each other. As this is an ad-hoc and a-posteriori structuring schema, as described
in Section 2.1.3, this section only presents hierarchical containment for chunks whose
hierarchy is known. Most chunks can appear in various hierarchical arrangements and are
therefore not contained in any other chunk.
During our initial exploration and log data collection for the LogChunks data set, we

collected a broad set of build logs from 29 languages and 87 repositories from Travis CI [18].
We inspected them to get an impression of the information one would want to retrieve
from a build log. In the following, we describe examples of information chunks that can
be retrieved from Travis CI build logs. All information examples containing “Travis” in
their name are specific to Travis CI build logs, the others can also apply to build logs from
another CI environment. Figure 3.3 shows an overview of these information examples.

TravisPhase

BuildPhase

TestPhase

LinterPhase

TravisWorker

GitFetch

TravisSystemInfo

WarningMessage

ErrorMessage

TravisExitCode

TravisTriggeringCommand

TravisPhaseName: Information

TravisPhaseOutput: Information

Information

TravisTiming

Figure 3.3: Information retrievable from build logs.

• BuildPhase Build logs can be divided into the sections produced by different
tools. These build steps could, for example, be a TestPhase, LinterPhase, Trav-
isWorker or GitFetch.
• TravisPhase Travis CI build logs consist of several build phases defined within the
Travis CI configuration language. Within the build log each phase is framed by
travis_fold:start:<phase name> and travis_fold:end:<phase name>.
A TravisPhase contains:

– TravisPhaseName The string Travis CI uses to identify the phase in start
and end statements.

– TravisPhaseOutput The output generated during the TravisPhase. The
chunk presenting the TravisPhaseOutput is the string between the start and
end statements.

Retrieving the names of the phases of a Travis CI build log could be used to later
reconstruct an overview of the executed steps within a build. Figure 3.4 shows an
example of a TravisPhase chunk and its components within a build log.
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• TravisTiming Travis can measure the time of specified sections of the build process.
A developer can retrieve this timing information to automatically monitor the
performance of their build. Figure 3.4 shows an example of a TravisTiming chunk.

• TravisWorker Travis CI logs which machine is executing each build. Retrieving this
information from multiple build logs can help visualize the impact of the build server
assignment algorithm. The TravisWorker is a good example that chunks belonging
to the same information can have different textual representations in different build
logs. Figure 3.5 and Figure 3.6 show examples of different TravisWorker chunks.

• TravisSystemInfo At the beginning of each log Travis CI describes the tech stack
of the server executing the build. A developer can retrieve the system information
from both failing and successful logs to identify if a failure could be based on the
execution environment. Figure 3.5 shows an example of a TravisSystemInfo chunk
within a build log.
• TravisTriggeringCommand Travis CI logs the commands it uses to call certain
tools. These come from the travis.yml configuring the build. This information
can be useful for a researcher to retrieve when they reverse engineer the build
configuration. Figure 3.7 shows an example of a TravisTriggeringCommand chunk.

• TravisExitCode Travis CI prints all exit codes of commands. A researcher can
retrieve these chunks to fill an overview of the build steps and why they failed.
Figure 3.7 shows an example of a TravisExitCode chunk within a build log.

• ErrorMessage Various tools involved in the build process output messages of errors
that occurred during their execution. A developer can retrieve them to understand
why the build failed. Figure 3.7 shows an example of an ErrorMessage chunk.
• WarningMessage In addition to errors, tools also print warning messages. Devel-

opers can collect and count them to encourage their team to resolve them. Figure 2.1
and Figure 2.2 show two examples of WarningMessage chunks formatted differently
in two build logs.

3.3 Characteristics of Chunk Retrieval Techniques

For this thesis, we want to evaluate different techniques to retrieve information chunks
from build logs, which we call chunk retrieval techniques. The techniques we investigate do
not require to parse the structure of a whole build log, but focus on extracting just one
specific information.
The user provides a configuration that specifies which information the chunk retrieval

should target and supplies the necessary information for the technique to identify the
targeted information chunk in a build log. Each chunk retrieval has a specific granularity,
i.e. the smallest retrievable text piece and uses a specific identification technique to select
the log parts it retrieves. Each configuration addresses a specific scope. The scope can be
a specific project, a tool involved in the build, a programming language or global, when
configuring a retrieval technique for all possible build logs. A run of a chunk retrieval
technique consumes a build log as a plain text file and produces a string output, which
consists of substrings of the build log text.
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Figure 3.4: Excerpt from a build log showing a TravisTiming chunk and a TravisPhase chunk,
containing the TravisPhaseName chunk and the TravisPhaseOutput chunk.

Figure 3.5: Excerpt from a build log showing a long TravisWorker chunk and a TravisSystemInfo
chunk.

Figure 3.6: Excerpt from a build log showing a short TravisWorker chunk.
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Figure 3.7: Excerpt from a build log showing an ErrorMessage chunk, an ExitCode chunk and a
TravisTriggeringCommand chunk.

The following sections of this chapter introduce the three chunk retrieval techniques we
investigate: program synthesis by example (PBE), common text similarity (CTS), and
keyword search (KWS). Lastly we describe other techniques which can also be treated as
chunk retrieval techniques. Table 3.1 shows a comparison of the presented techniques.

Table 3.1: Overview of the described chunk retrieval techniques.

Name Acronym Identification Tech-
nique

Granularity Configuration

Program Synthesis
by Example

PBE Regular expression
program

Character In/output examples

Common Text Sim-
ilarity

CTS TF-IDF & cosine
similarity, expected
number of lines

Line Output examples

Keyword Search KWS Keywords, expected
number of lines

Line Keywords, context
length

Random Line Re-
trieval

RLR Random sample Line Retrieval length

Diff Approach — Line not present in
successful log, infor-
mation retrieval

Line Logs from failing
and successful
builds
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3.3.1 Program Synthesis by Example (PBE)

Programming by Example is a technique which synthesizes programs according to in- and
output examples provided by the user. It enables users to create programs without a
priori programming knowledge [45]. In the context of text extraction through regular
expressions, Programming by Example relieves the developer from having to understand
the whole document structure to solve a single extraction task [34]. In this work, we refer
to our interpretation of Programming by Example as PBE . We investigate the suitability
of PBE to retrieve information chunks from build logs. In the following, we explain the
configuration and application of PBE to chunk retrieval from CI build logs.

Configuration In/output examples are the main driver of Programming by Example.
We refer to in/output examples as examples. When retrieving information chunks from
build logs the input is a whole build log, i.e. the whole text of the build log file. The output
is a substring of the log file text, representing the substring that should be retrieved by the
synthesized program when given the corresponding input file. One or multiple examples,
the training examples, configure a chunk retrieval with PBE: they define the substring of a
build log that should be extracted. The PROSE program synthesis then tries to construct a
regular expression program consistent with all training examples. A program is consistent
with an example if it returns the defined output when executed on the defined input [33].
PBE reports an error back to the user if it could not synthesize a consistent program. The
program synthesis builds on the FlashExtract DSL, which in turn uses the FlashMeta
algorithm. Both are described in Section 2.2.1.

Application A run of PBE takes a build log file as input and applies the synthesized
regular expression program. It then returns the substring of the build log matched by the
program or an empty string if the program found no match.

3.3.2 Common Text Similarity (CTS)

Text Similarity approaches are used to filter unstructured textual software artifacts [57–59,
66]. One common and simple technique is the Vector Space Model [54]. We investigate
when text similarity is a suitable technique to retrieve information chunks from build logs.
In the following we will explain the concept of how we apply text similarity to information
retrieval from CI build logs, which we refer to as CTS .

Configuration To configure chunk retrieval though text similarity we chose to use the
same concept of examples as for PBE. The lines of the output strings of the training
examples define our search query. The algorithm splits the search query into single lines
and identifies tokens, in our case words. Then we build a document-term-frequency matrix
over the lines from the search query and prune very often or very rarely appearing words.
Next, the algorithm applies TF-IDF to the matrix, a best practice for natural language
queries [55].
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Application To retrieve the desired information from a build log, we parse the whole
text and process it in the same way as the output of the training examples. The algorithm
calculates the cosine similarity [67] to compare each line of the build log with each line
of the search query. After summing up the similarities of each build log line to all search
query lines, we sort the build log lines in decreasing similarity. The average number of
lines in the outputs of the training examples determines how many of the most similar
lines are returned as the output of the retrieval run.

3.3.3 Keyword Search (KWS)

When developers are looking for a specific piece of information within a large amount of
unstructured information, a first ad-hoc approach they use is searching for related keywords.
Indeed, this was one of the most common approaches we took when searching for the
reason the build failed within a log while creating our LogChunks data set. As this is a
technique readily available in many tools developers use to view build logs, we study when
such a keyword search is suitable for retrieving information chunks from CI build logs. In
the following we will explain how we use simple keyword search to retrieve information
from CI build logs, which we refer to as KWS .

Configuration A set of keywords configures the chunk retrieval with KWS. To better
compare KWS with PBE and CTS, we also configure it through examples. We link each
example with keywords, which appear in the targeted chunk or close to it in the input
build log. The configuring keywords for KWS are the ones that appear most often in the
keywords of all training examples.

Application For a retrieval run, we take a whole build log file as input and search for
all exact occurrences of the keywords. As keywords are often not directly describing the
desired information, but rather appear close to the desired information, KWS also retrieves
the lines around the found keyword. The number of surrounding lines retrieved is the
average of lines in the output of the training examples.

3.3.4 Other Techniques

Log Diff Amar et al. use a technique based on line diffs and information retrieval
to identify relevant lines from a failed build log [12], as we describe in more detail in
Section 2.1.2. The configuration for the technique is the log from the last successful build
and relevant past failures. This technique retrieves the lines from a build log that are not
present in the successful build log and contain terms related to the given past failures.

Random Line Retrieval (RLR) In our evaluation, we want to compare against a
baseline of randomly extracted lines. The average number of lines in the outputs of the
training examples is the configuration for random line retrieval (RLR). It retrieves this
number of lines randomly sampled from the build log.
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3.4 Tool Implementation

3.4 Tool Implementation

For our comparison study we implemented PBE, CTS, KWS and RLR and a unifying
interface. The unified interface is implemented in Ruby and calls the separate technique
implementations over the command line. The implementation of PBE in C# is based on
the Microsoft PROSE library [31]. We implemented CTS, KWS and RLR using R and the
text2vec library [68].
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This chapter describes the creation of the LogChunks data set that we use in our empirical
comparison of chunk retrieval techniques. LogChunks is a collection of 797 Travis CI build
logs from 80 GitHub repositories spread over 29 programming languages. For each build
log we manually label which substring describes why the build failed. The data set also
provides keywords we would use to search for the labeled log chunk and categorizes the log
chunks according to their format within the log.

We start this chapter by explaining why we created LogChunks and how it enables us to
compare the chunk retrieval techniques PBE, CTS and KWS. Then, we introduce related
data sets and show how LogChunks differs. The chapter describes the data schema of
LogChunks and our log collection process. Further, it presents the labeling process and
how we validated the labeled data, including a survey of the original developers of the
projects represented in LogChunks.
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Logs from 
Failed CI Builds
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Failure, 
Error, 
===DIFF===

Structural 
Category

Failure: 

xxx 
 
———
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Labeling

Travis CI

GitHub

Figure 4.1: Overview of LogChunks.

4.1 Motivation

We create LogChunks as a data set for our empirical comparison study of the three chunk
retrieval techniques PBE, CTS and KWS. In the following, we motivate which repositories
and build logs we collect and which data we label for each build log.

Log Collection Existing build log analysis approaches, such as writing a custom parser
and creating regular expressions, are specific to the build tools which create the targeted
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log output. In contrast to that, our findings about the chunk retrieval techniques should
not be specific to a particular build tool. As the main development language in a repository
influences the build tools, we want our comparison study and LogChunks to cover a wide
array of development languages. This is why we selected GitHub repositories from 29
different main development languages for our data set.
Examples configure the chunk retrieval techniques we investigate. As the structure

of a build log changes from project to project, examples on logs from one project are
not suited to configure a retrieval on logs from another project that uses different build
tools. Therefore, a user of a chunk retrieval technique has to manually create the examples
for each targeted information and project. The effort of creating these examples should
not be too high, e.g. as high as developing a custom extraction program. Our study
should investigate how good the chunk retrieval techniques perform with a small number
of training examples. For that reason, we choose to cover a wide range of 80 repositories
and include only a few, namely ten, logs and examples per repository.

Targeted Log Chunk To evaluate chunk retrieval techniques, we have to select an
information chunk the techniques should target. The targeted information chunk should
occur as a realistic use case for developers or researchers and should not be trivial for any
of the studied techniques.

As the targeted log chunk we choose the part of the log describing why the build failed.
Developers examine build logs to identify the cause of a build failure so they can address
the issue. As we described in Section 2.1.1, various researchers analyze build logs for the
reason the build failed.
In addition, the log chunk describing why a build failed can be represented in different

ways in build logs. The representation and content of this log chunk depends on the tool
reporting the fault and a build can fail in various of the tools involved in the build. This
makes it non-trivial for any of the three techniques to extract. An example of a log chunk
easily extractable by all of the three techniques is the TravisTiming, described in Section
3.2. Travis CI logs its timing statements in an always consistent structure, therefore it
would be easy for PBE to synthesize a regular expression program to extract them. The
same holds for search keywords identifying the lines which contain the TravisTiming and
selecting lines with similar text content.

Additional Data: Keywords and Structural Categories For each log chunk exam-
ple we additionally annotated keywords we would use to search for this log chunk, as well
as a categorization of the chunks into structural categories according to their format within
the log. The technique KWS is configured by keywords instead of in/output examples
like the other techniques. To make the evaluation more consistent and comparable we
choose to annotate search keywords to each log chunk example. We can then use these
extended examples as a configuration for KWS. An increasing number of examples is then
comparable to the user basing his given keywords on more previously seen build logs.
For our second research question we want to investigate how structurally similar the

training examples have to be for a chunk retrieval technique to be applicable. To measure
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this in our study we choose to categorize the examples according to their format within the
log. Section 4.3 gives examples of log chunks from the same and from different structural
categories. As we evaluate the techniques separately for separate projects, the categorization
is relative to the project which produced the build log.

4.2 Related Data Sets

This section presents existing data sets of CI build logs and why LogChunks is unique
among them.

TravisTorrent The TravisTorrent data set [17] collects a broad range of metadata about
builds on Travis CI. It combines data accessible through the public Travis CI API [69],
related data from GHTorrent [70], the corresponding git repository and data obtained
through analysis of build logs. The data obtained through build logs contains the names
of failing test cases, similar to the chunk describing why the build failed in LogChunks.
However, these values are obtained through a manually developed parser, which only
supports specific Ruby test runners and Java Maven or JUnit logs. LogChunks provides
manually labeled data on the description of why the build failed for a much wider selection
of programming languages.

Travis CI Build Log Data Set Loriot et al. [71, 72] collected a large amount of Travis
CI build logs from 130 GitHub repositories to analyze their use of the Checkstyle plugin.
They selected Maven repositories that included the Checkstyle plugin and also used Travis
CI. Their data set only provides the plain build logs, whereas LogChunks additionally
provides manually labeled data about the chunk describing why a build failed.

4.3 Data Schema

This section describes the file structure and the data schema of LogChunks. We give a
detailed explanation for the manually labeled data.
LogChunks has two top level folders, build-failure-reason and logs. Each contains

folders representing the main languages of the repositories in LogChunks.
The logs are organized in folders for each repository. Within each repository folder the

logs are separated according to build status. Currently LogChunks only contains logs from
failed builds. The build status folder contains the full logs in files named with the ID of
the Travis CI build that produced the log.
The folder build-failure-reason contains the manually labeled data of LogChunks.

The data set provides an XML file for each repository. Figure 4.2 presents the schema of
these XML files.

For each repository, LogChunks gives about 10 Examples. Each Example consists of:

• Log: the relative path to the input build log.
• Chunk: the targeted information chunk. We are targeting the substring of the log

that describes why the build failed.
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1 <Examples >
2 <Example >
3 <Log >C/php@php -src/ failed /529279089. log </Log >
4 <Keywords >ERROR , FAIL , DIFF </ Keywords >
5 <Category >0</ Category >
6 <Chunk >001+ ERROR: process timed out
7

8 001- OK.
9 ======== DONE ========

10 FAIL Bug #60120 ( proc_open hangs when data in stdin/out/
↪→ err is getting larger or equal to 2048) [ext/
↪→ standard /tests/file/ bug60120 .phpt]</ Chunk >

11 </ Example >
12 ...
13 </ Examples >

Figure 4.2: Example XML file from LogChunks.

• Keywords: keywords we would use to search for the log chunk.
• Category: a categorization of the structural representation of the log chunk within

the build log. The category is relative to the other examples for the same repository.

In the following, this section defines in more detail the labeled log chunk, search keywords
and structural categories.

Chunk That Describes Why The Build Failed The Chunk is the substring of the
build logs that describes why the build failed. This can be the failing test case, the
description of a failed linter rule or a compiler error. The Chunk is one continuous string cut
from the build log. If there are multiple errors leading for the build to fail, the substring
contains the first appearing continuous error descriptions. Continuous means that no lines
reporting normal build behavior are interrupting the error descriptions. When the reason
why the build failed was described in an external log, the Chunk includes the description
that the build failed.

Keywords The Keywords contain a list of one to three strings appearing within the Chunk
or in the area around it in the build log. We selected keywords we would use to search for
the log Chunk after analyzing about 800 build logs manually. Some example keywords from
LogChunks are: “FAIL”, “Error”, “failed”, “[-]”, “===================” or “ERR!”.

Category For each repository, we assign structural categories to the examples. The
structural category compares how the Chunks are represented within the build logs. Build
tools highlight their error messages with markings, e.g. starting each line with “ERROR”,
surrounding lines filled with special characters or additional empty log lines. Two examples
fall into the same structural categories if they are surrounded by similar markings. Figure
4.3 presents a log chunk from the same category as the log chunk from Listing 4.2. In
comparison to that, Figure 4.4 presents a log chunk which is formatted differently within
the log file. For most cases, two Chunk examples that fall into one category are outputted
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1 ======== DIFF ========
2 -=-=-=-=-=-
3 005+ Parameter #1 [ <optional > $flags ]
4

5 005- Parameter #1 [ <optional > $ ar_flags ]
6 ======== DONE ========
7 FAIL Bug #71412 ArrayIterator reflection parameter info [

↪→ ext/spl/tests/ bug71412 .phpt]
8 -=-=-=-=-=-
9 TEST 9895/13942 [2/2 concurrent test workers running ]

Figure 4.3: Log chunk from the same structural category as the log chunk presented in Figure 4.2,
“-=-=-=-=-=-” separates the log chunk from one line of context.

1 [0K$ ./ sapi/cli/php run -tests.php -P -d extension =‘pwd ‘/
↪→ modules / zend_test .so $(if [ $ ENABLE_DEBUG == 0 ];
↪→ then ...

2 -=-=-=-=-=-
3 Illegal switch ’j’ specified !
4 -=-=-=-=-=-
5 Synopsis:

Figure 4.4: Log chunk from a different structural category than the log chunk presented in Figure
4.2, “-=-=-=-=-=-” separates the log chunk one line of context.

either within the same build phase or by the same build tool. For each repository, the
structural categories are represented as integers, starting at 0 and increased with the next
appearing category in chronological build order.

4.4 Log Collection

We describe how we select the repositories, builds and logs for LogChunks. To collect
the build logs we built the GHTorrentParser, LogCollector and TravisRequester using
Ruby.

Repository Sampling First, we determine a set of repositories to query logs from. Our
GHTorrentParser queries the GHTorrent [70] data set for the most popular languages on
GitHub [73]. It then retrieves the most popular repositories for a given language. We
define Popularity as the number of watches. The TravisRequester, our tool querying the
Travis API [69], can then check for a given repository whether it uses Travis CI.

For LogChunks we queried GHTorrent on 01/04/2018 for the three most popular repos-
itories of each of the 30 most popular languages. We found 80 repositories from 29
languages that use Travis CI. Among these repositories are, for example, git/git,
Microsoft/TypeScript and jwilm/alacritty.

Build Sampling The LogCollector uses the TravisRequester to obtain the newest
builds for a given repository. It uses a stratified sampling approach: TravisRequester
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4 LogChunks Data Set

saves the obtained builds in buckets according to their status. We encountered the following
statuses during our data collection: created, started, cancelled, passed, errored and failed.
The user of TravisRequester configures how many builds should be checked and how
many builds per status should be saved.
To sample the builds for LogChunks we let TravisRequester check up to 1000 builds

per repository and keep ten of the status failed [74]. A Travis CI build is marked as failed
when it faults in the script section of the build configuration defined by the user.

Log Sampling For each build, the TravisRequester then selects a log to download.
Travis CI attributes logs to jobs. A single build can consist of multiple jobs, e.g. building
the same code version and executing tests in different testing environments. A failed build
can have successful job executions, as just one failed job leads to the whole build being
marked as failed. TravisRequester queries each build for the first job, which has the same
state. For the selected jobs, the tool queries the Travis API V3 over HTTPS to obtain the
corresponding build log.
We manually inspected the collected build logs and had to discard logs from three

repositories. One had only a single failed build, two others had empty build logs on Travis
CI. In total we collected 797 logs from 80 repositories.

4.5 Labeling Process

After collecting a wide range of Travis CI build logs we manually labeled which text chunk
describes why the build failed. Following that, we assigned search keywords and structural
categories to each log chunk.

Chunk That Describes Why The Build Failed For each repository, the labeler
skimmed through the build logs and tried to identify the first occurrence of a description
why the build failed. They copied out the first continuous description as the Chunk.
They preserved whitespace and special characters, as they might be crucial to detect the
targeted substring. To support exact learning of regular expressions identifying the labeled
substrings the labeler aimed to start and end the labeled substring at consistent locations
around the fault description.

Keywords We presented the Chunk and ten lines above and below to the labeler. Their
task was to note down three strings they would put into a document search function to
find this failure description. The string should appear in or around the Chunk substring
and is case-sensitive. There are no special limitations on the string itself, especially spaces
are also allowed.

Category To label the structural categories we again presented the Chunk and the
surrounding context to the labeler for all logs from a repository. We asked them to assign
numerical categories according to whether the Chunk had the same structural representation,
i.e. the same surrounding or identifying characters. The labeler should start the categories
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with 0 and increase as new ones appear. For reproducibility, we presented the logs in
chronological build order.

4.6 Validation

We validate our collected data in two different ways. A different labeler performed a second
pass of labeling the build failure reason, keywords and structural categories on a subset of
the data. In addition, we sent out a survey to the developers, whose commits triggered the
builds within our data set. We asked them whether our retrieval of the log part describing
the reason the build failed was correct. This sections describes these two validation studies.

4.6.1 Inter-Rater Reliability Study

To evaluate the validity of our labeled data we performed a second labeling of a sample of
the data in LogChunks.

Method We followed the same labeling process as described in Section 4.5. For the
build failure reason and the keywords, we presented 30 randomly sampled build logs from
distinct repositories in LogChunks. The structural categories are relative to other logs from
the same repository. Therefore, we randomly sampled 3 repositories and presented all 10
examples within them to the second labeler.

Results For the substring describing why the build failed, the two labelers exactly agreed
in six cases. In 15 cases the second labeler selected more lines, in five their selections
overlapped and in four they completely disagreed. Regarding the keywords, the two labelers
completely agreed in nine cases and completely disagreed in two cases. In nineteen cases
there was overlap in the keywords of the two labelers.When classifying the chunks into
structural categories, the two labelers agreed in 26 cases and disagreed in four cases.

Discussion The results of this validation study show that there is overlap in the data
from both labelers, however also a high variation. We believe that the main cause for
this is that our explanations to the second labeler were not extensive enough. There were
implicit, inconsistent assumptions both labelers created during their work. In the following
we describe these assumptions from both labelers and the implications on our description
of the data classes.

For the first data class, the reason the build failed, it was ambiguous whether the labeled
substring should contain the information that the build failed. This concerns statements
like “The build exited with 1”. One labeler included such statements, while the other
one only focussed on the log parts describing why the build failed, e.g. the name of the
failing test case.

While labeling the keywords a developer would use to search for the log part describing
why the build failed, the one labeler allowed arbitrary strings appearing around the presented
log part. In contrast to that, the other labeler focussed on actual words, delimited by
spaces or special characters. One labeler ignored capitalization, while the other one selected
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4 LogChunks Data Set

case-sensitive keywords. A third difference was that the first labeler was presented with all
substrings from a repository, yielding more general keywords than the second labeler.
For the structural categories this validation study showed a high overlap. In our

instructions to the second labeler we did not emphasize the structural aspect enough. They
sorted into categories along why the build failed, putting failing tests from different test
runners into the same category even though the failing tests were presented differently in
the log.
The main conclusion from this study is that adequately communicating all decisions

and assumptions on how data is labeled is important and difficult. We reviewed the
misunderstandings and incorporated more thorough descriptions of our data classes in
Section 4.3.

4.6.2 Developer Survey

For LogChunks we analyzed around 800 build logs from different repositories and tried
to extract the part of the log which describes why the respective build failed. As we
were not involved in the development of any of the projects within our data set we only
relied on our previous experience with various build logs and systems. We only took the
logs into account and did not check the related configurations, so it is possible that we
extracted parts that do describe errors but that the respective step failing is ignored by
the configuration and the build failed for another reason.
The person who probably knows best why a build failed is the one committing the

changes which triggered the build. If the build was e.g. part of a pull request then developer
likely inspected the failed build and tried to fix the build so the pull request can be accepted.
We sent out mails to the original developers whose commits triggered the builds represented
in LogChunks and asked them whether the log chunk we labeled actually describes why
the build failed. This section describes out survey and discusses our results.

Method Using the Travis API, for every build log in the data set we looked up the
corresponding build and the committer information. We grouped all commits triggered by
one developer and sent out an mail to each of the developers, asking whether the log chunk
selected during our labeling was indeed describing the reason the build failed. Figure 4.7
shows one of the mails sent out. The mail included links to the corresponding commits,
build overview and log file. We asked the developers to fill out a short survey in case our
chunk was not correct. Look at Figure 4.10 to get an impression of the survey. In the
survey, we presented the selected log part and asked the developer to paste in the log part
actually describing the failure reason or describe in their own words why we were wrong.
As some of the chunks we labeled are many lines long, we trimmed all down to 10 lines to
keep the mail readable.

Results In total we sent out mails to 246 developers, asking about 3.2 build logs per
mail on average. 32 of these mails could not be delivered, e.g. because they were addressed
to noreply mail addresses. These 32 mails related to 68 of the build logs. We received
answers from 61 developers, responding about 144 build logs. Figure 4.5 and Figure 4.9
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show the proportions of mails delivered and logs answered about, as well as those not
delivered and unanswered.
Of the 144 log chunks we received answers about, 132 were marked as describing why

the build failed. 26 answered either “close, but not quite correct” or “no, the build failed
for another reason”. We manually inspected the 26 negative answers and found that some
stated that the proposed chunk did not show the whole description of why the build failed.
This is because we had to trim long chunks to keep the mails readable. After adjusting
these answers, 12 answers stated that our labeled log chunk was not correct, shown in
Figure 4.8.

Discussion This study highly strengthens the trust in the validity of the extracted build
failure reasons in LogChunks. The study received answers about 18% of the logs from
LogChunks. After manual correction, 91% of the received answers said our labeled chunks
were accurate.

One of our chunks only showed a warning and the developer proposed to also include
the line above, stating that warnings are treated as errors in the build. In others that were
identified as incorrect, we labeled the error message of an error that was later ignored and
did not lead to the build failing.
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Figure 4.7: An example of the mails we sent out to developers for validation of our labeled log
part.
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5 Empirical Comparison

To investigate when PBE, CTS and KWS are suited to retrieve chunks from CI build logs
we evaluate them on the LogChunks data set. This chapter describes our study design and
which metrics we measure to answer our research questions. In the presentation of the
results, we first focus on each of the three techniques and later compare them against each
other. study graphic

Training Set:  
1…5 Examples

Test Set: 
1 Example

from 80 Projects

PBE, CTS, KWS, RLR

Apply to

Measure

Training Set:
# Structural Categories

↳ RQ 2.1 ↳ RQ 2.3
Size

Desired Lines 
Retrieved Lines

↳ RQ 2.2

Precision 
Recall 
F1 Score

Log + 
Targeted Log Chunk 
= Example

Chunk 
Retrieval 
Technique

LogChunks

Figure 5.1: Study design of our technique comparison study.

Research Questions

RQ1: Which criteria influence the suitability of a chunk retrieval technique for
CI build logs?

RQ2: Under which conditions are PBE, CTS, and KWS suited to retrieve
information from CI build logs?

RQ2.1: How many examples do PBE, CTS, and KWS need to perform best?
RQ2.2: How structurally similar do the examples for PBE, CTS and KWS need

to be for the techniques to be applicable?
RQ2.3: How accurate are the retrievals of PBE, CTS, and KWS?

5.1 Study Design

For the comparison, we evaluate the three chunk retrieval techniques PBE, CTS and KWS,
described in Sections 3.3.1, 3.3.2 and 3.3.3. Random Line Retrieval (RLR), explained
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in Section 3.3.4, acts as a baseline for the comparison. We run four techniques on the
examples from LogChunks.

Training and Test Set We use LogChunks as the data set for our study. For each one
of 80 repositories it contains about 10 build logs, manually labeled with the substring
describing the reason the build failed. In addition to that, it contains keywords to search
for that substring and which structural category the substring belongs to.
For each repository in LogChunks, we split the examples chronologically into training

and test set. Therefore, we train on examples from past build logs and test on more recent
build logs.

RQ 2.1: Size of Training and Test Set To analyze how many examples the chunk
retrieval techniques need to perform best, we evaluate the techniques with different training
set sizes. We train each technique with one to five examples from each of the repositories
within LogChunks. The size of the test set is one.

RQ 2.2: Recording Structural Categories To determine how structurally similar
the examples for the chunk retrieval techniques need to be, we record the structural
categories of the examples in the training and test sets.

RQ2.3: Accuracy Metrics To measure the accuracy of the retrieved chunks we save
the output lines of the chunk retrieval run on the input of the test example (RetrievedLines).
As oracle in our evaluation, we save the desired lines from the output of the test example
(DesiredLines).

We calculate the following metrics:

• True positives: DesiredLines ∩RetrievedLines

• Precision: #TruePositives
#RetrievedLines

• Recall: #TruePositives
#DesiredLines

• F1-score: 2 · Precision ·Recall
Precision + Recall

• Successful retrieval: true if Recall = 1

Precision of a chunk retrieval describes which proportion of the retrieved lines were
desired. Recall of a chunk retrieval describes which proportion of the targeted lines were
retrieved. Throughout the presentation and discussion of our results we show these two
metrics separately, as they might have a different weight when choosing a suitable technique
for a task. In addition, we calculate the F1-score, the harmonic mean of precision and recall.
We define a successful retrieval as one where all desired lines were extracted, therefore
when recall is one.
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5.2 Results

Recall and precision of CTS and KWS vary with the number of lines selected for retrieval.
We evaluate the effect of varying the number of extracted lines by multiplying the average
number of lines present in the training examples with a retrieval size factor from 0.5 to 2.5
in steps of 0.5.

5.2 Results

This section presents the results for PBE, CTS and KWS separately. Afterwards we
compare the three techniques with each other and RLR as baseline.

successful partially successful unsuccessful no match no program
0

25

50

75

100

125

150

175

138

18 12

59

173

Figure 5.2: Results of chunk retrieval with PBE.

1 Test Output :
2 Error: Invalid CSS after "2.3 em": expected expression (e.g

↪→ . 1px , bold), was ";"
3 on line 86 of sass/ components / dropdown .sass
4 Desired Test Output :
5 Error: Invalid CSS after "2.3 em": expected expression (e.g

↪→ . 1px , bold), was ";"
6 on line 86 of sass/ components / dropdown .sass
7 from line 5 of sass/ components /_all.sass
8 from line 6 of bulma.sass

Figure 5.3: Example for an unsuccessful retrieval (PBE retrieved only two of the four targeted
lines).

5.2.1 Program Synthesis by Example (PBE)

Figure 5.2 shows the results of the PBE runs in our evaluation. Out of the 400 runs, 5
per each one of the 80 example sets, PBE extracted all the desired lines in 138 cases. In
89 further cases a program was also successfully synthesized, though in 59 of the 89 cases
the synthesized program yielded no output at all. In 30 of the 89 cases the synthesized
program did not extract all of the desired lines. For these 30 cases, the average recall was
28%. We present an example of such an unsuccessful retrieval in Listing 5.3, where the
synthesized regular expression program only retrieved two of the four targeted lines. In 173
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of the 400 cases the PROSE program synthesis could not synthesize a regular expression
program that is consistent with all of the training examples.

Figure 5.4 shows the results of PBE runs compared to the number of structural categories
present in the training and test examples. It shows that the program synthesis is more
likely to succeed when there are only a few categories present in the training examples.
When two structural categories are present, PROSE could in most cases not synthesize
a program consistent with all training examples. For three or more present categories
PROSE could never synthesize a consistent program.
Figure 5.5 shows precision and recall of the 227 runs where PBE could synthesize a

program consistent with all training examples. When the training set size increases from
one to two, recall and F1-score increase by about 25%, precision increases by about 10%.
For two or more training examples, recall and F1-score stay around 75% and precision
around 96%.

5.2.2 Common Text Similarity (CTS)

Figure 5.6 presents precision, recall and F1-score of chunk retrieval using CTS for an
increasing number of training examples. When using one to five training examples, the
size of the training set has no noticeable influence on precision, recall or F1-score of the
chunk retrieval with CTS.

Figure 5.7 shows the same measurements for an increasing number of structural categories
in the training and test examples. With increasing category count, precision, recall and
F1-score decrease. Especially for more than three categories present we have no chunk
retrieval runs where all desired lines were extracted.
Figure 5.8 shows the effect of the retrieval size factor on precision, recall and F1-score

of chunk retrieval runs with CTS. The precision ranges from 52% when retrieving half
expected number of lines to 25% when 2.5 times the expected number of lines. The recall
ranges from 30% to 55%. A retrieval size factor of 1 gives the best average F1-score with
51%.

5.2.3 Keyword Search (KWS)

Figure 5.9 presents precision, recall and F1-score of chunk retrieval using KWS for different
numbers of training examples. The recall increases by about 12% when increasing the size
of the training set to more than one example, while the precision stays constant at around
16%. The F1-score stays around 26%.

Figure 5.10 shows the same measurements for an increasing number of structural
categories in the training and test examples. For more than one structural category in the
training and test examples the recall decreases by about 20% and the precision decreases
about 6%. For more than two structural categories no clear trend is visible in precision,
recall or F1-score for an increasing amount of categories in the training and test examples.

Figure 5.11 shows the effect of the retrieval size factor on precision, recall and F1-score of
chunk retrieval runs with KWS. The precision is 19% when retrieving half of the expected
number of lines. On average 9% of the lines in the build log are retrieved then. When 2.5
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Figure 5.4: Results of chunk retrieval with PBE for an increasing number of structural categories
in the training and test sets.

times the expected number of lines are retrieved, the precision decreases to 10% and a
quarter of the lines in the build log are retrieved on average. The recall ranges from 58%
to 75% and the F1-score shows a constant decrease from 29% to 17%.

5.2.4 Comparison of All Techniques

Figure 5.12 compares the success of all chunk retrieval by the different techniques in
our study. CTS and KWS extract some of the desired lines in 79% and 88.5% of the
chunk retrieval runs. With 38.25%, KWS also has the highest number of fully successful
extractions, followed by PBE with 34.5%. PBE has the lowest number of partial retrievals
with only 18 out of 400 chunk retrieval runs.

The averaged precision, recall and F1-score f all techniques is compared in Figure 5.13.
The recall of PBE has a high skew towards one and zero, meaning in most cases either
the retrieval is successful or no relevant lines are extracted at all. PBE has the highest
average precision with 95%. Chunk retrieval with CTS has the highest average F1-score
with 51% and the second highest recall with 46%. KWS has the smallest precision of the
three chunk retrieval techniques. With 16% it is still higher than the precision of the RLR
baseline with 7%. KWS has the highest recall of all techniques with 70%.

Figure 5.14 and Figure 5.15 show the influence of a single structural category present in
the training examples compared to multiple categories present. For more than one present
category, the recall of PBE decreases greatly. For CTS and KWS the values also decrease,
while RLR is not affected by the number of structural categories present.
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Figure 5.5: Precision, recall and F1-score of chunk retrieval when PBE could synthesize a
consistent program compared with the size of the training set.
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Figure 5.6: Precision, recall and F1-score of chunk retrieval with CTS for an increasing training
set size.
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Figure 5.7: Precision, recall and F1-score of chunk retrieval with CTS for an increasing number
of structural categories in the training and test sets.
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Figure 5.8: Precision, recall and F1-score of chunk retrieval with CTS compared to retrieval size
factors.
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Figure 5.9: Precision, recall and F1-score of chunk retrieval with KWS for an increasing training
set size.
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Figure 5.10: Precision, recall and F1-score of chunk retrieval with KWS for an increasing number
of structural categories in the training and test sets.
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Figure 5.11: Precision, recall and F1-score of chunk retrieval with KWS compared to retrieval size
factor.
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Figure 5.12: Success of chunk retrievals for all techniques.
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Figure 5.13: Precision, recall and F1-score of all techniques compared.
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Figure 5.14: Precision, recall and F1-score of all techniques compared when training examples are
in one structural category.
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Figure 5.15: Precision, recall and F1-score of all techniques compared when training examples are
in more than one structural categories.
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6 Discussion

This chapter presents the answers to our research questions:

Research Questions

RQ1: Which criteria influence the suitability of a chunk retrieval technique for
CI build logs?

RQ2: Under which conditions are PBE, CTS, and KWS suited to retrieve
information from CI build logs?

RQ2.1: How many examples do PBE, CTS, and KWS need to perform best?
RQ2.2: How structurally similar do the examples for PBE, CTS and KWS need

to be for the techniques to be applicable?
RQ2.3: How accurate are the retrievals of PBE, CTS, and KWS?

The first section discusses for PBE, CTS and KWS separately in which cases they
perform best. It details for which types of input build logs, available training examples
and consumption of the retrieved output each technique is suited. In the following section
we discuss which of these criteria should influence the decision to use a certain technique
most. Based on our empirical comparison, we present a decision tree between the three
techniques we investigated.

6.1 Interpretation of Study Results

This section discusses the study results for each of the analyzed chunk retrieval techniques
separately. It gives recommendations which kind of information chunk targets are best for
each technique and for what kind of usage the respective output is suitable.

PBE CTS KWS

Structural Categories 1 less is better best 1
multiple okay

Training Set Size 2 no influence 2

Precision high
(if synthesis succeeds) medium low

Recall high
(if synthesis succeeds) medium high

Confidence in
Output Correctness high low low (precision)

high (recall)
Output Consumption by program human human

Table 6.1: Recommendations for each of the investigated chunk retrieval techniques.
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6.1.1 Program Synthesis by Example (PBE)

Configuration and Input Our study results show that chunk retrieval with PBE gives
best results when the training examples are from one structural category. This means it is
suited to retrieve information chunks that always have the same surrounding structure. To
extract for example the reason a build failed, the log passage describing the failure would
always have to be started and ended the same way.
When the training examples are of the same structure, two examples are enough input

for PROSE to synthesize a regular expression program with good recall. In our study,
additional training examples did not improve the chunk retrieval.

Retrieval Output Usage If the program synthesis succeeds and applying the regular
expression program yields an output, PBE shows a high precision and a high recall. The
tool clearly identifies a failing program synthesis or when no output from the program
applied to a build log is obtained. Therefore, if there is an output, the user can have high
confidence that it is the correct output. This makes output from PBE chunk retrieval well
suited for consumption by other software components.

6.1.2 Common Text Similarity (CTS)

Configuration and Input Chunk retrieval using CTS also yields better results the
fewer structural categories are present in the training and test examples.
The number of training examples had no noticeable influence on precision or recall in

our study. Information retrieval techniques like text similarity commonly learn on a higher
number of examples than used for our study. Future work is needed to investigate how
many examples yield improvements in the chunk retrieval over a single training example.
Extracting the average number of lines present in the training examples gives the best

retrieval results for CTS, according to the F1-score.

Retrieval Output Usage CTS has good precision and recall on average, though the
precision or recall of a chunk retrieval run is very hard to predict from the given result.
Therefore, retrieval output from CTS is suited to be read by a human.

6.1.3 Keyword Search (KWS)

Configuration and Input KWS has a higher recall than the two other techniques
for multiple structural categories present in the training and test examples. This makes
KWS a good technique if there is little prior knowledge on how the targeted log chunk is
represented in the build log to be analyzed. For the example of extracting the reason the
build failed, KWS is best suited if a build can fail in various steps logged by different tools
and no pre-categorization of where the build failed is available.
With two training examples KWS achieves good recall.
Retrieving the average number of lines present in the outputs of the training examples

around every found keyword yields reasonable recall. Selecting 1.5 times as many lines
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6.2 Recommendations of Suitable Techniques

around every found keyword does improve the recall within our study but also increases
the proportion of lines retrieved overall and therefore decreases precision.

Retrieval Output Usage Even though KWS has the highest recall of all three tech-
niques, its precision is also the lowest. The output of a chunk retrieval with KWS is well
suited to be read by humans.

structural
categories

confidence in
output precision

and recall

low recall

precision
or

recall

PBE CTS KWS

one multiple

less
important recallprecision

show no output show output

high

Figure 6.1: Our preliminary recommendation scheme for chunk retrieval techniques.

6.2 Recommendations of Suitable Techniques

After discussing the three chunk retrieval techniques separately we now want to unify our
results into one recommendation scheme. We present a decision tree, which developers
and researchers who want to retrieve information chunks from build logs can follow. The
decision tree is built up of questions which either lead to more questions or to a leaf node
containing a recommended technique. Figure 6.1 presents the decision tree.
Caveat! This is a preliminary theory based on the results from our comparison study.

The recommendations are therefore based on our implementation of the chunk retrieval
techniques as well as the logs in the LogChunks data set.
This decision tree is the answer to our first research question about which criteria

influence the suitability of a chunk retrieval technique. The earlier in the decision tree a
criterion is noted, the more important it is when distinguishing the techniques.

The first and most important aspect are the structural categories. Are the information
chunks you would like to retrieve always presented in the same structural way within the
build logs? Then the information chunks in all training examples and the analyzed build
log are in the same structural category.
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6 Discussion

If the information chunks are from multiple structural categories, i.e. they are not
represented in the same structural way within the build logs, and recall is more important
than precision we recommend to use KWS. If the representations are from multiple
structural categories and precision is more important than recall to the user we recommend
CTS. We also recommend CTS when the representations are from one structural category,
when the user does not require a high confidence in the precision or recall of the outcome
and when the user would rather have output with low recall instead of no output at all.
When the representations are from one structural category and the user wishes a high
confidence in the correctness of the output or prefers no output over output with low recall,
we recommend PBE.

Example of Using the Recommendation Scheme To illustrate how one would use
our decision tree to find a suitable chunk retrieval technique we describe two concrete
examples: a researcher investigating why CI builds fail and a software team wanting to
monitor their build performance.
In our first example, a researcher studies whether test failures in CI are caused by a

small or by a large group of test cases. They gather CI build logs from various projects,
which are their only available data source. The task of the researcher is to extract the
names of the failing test cases from each build log. When they use our recommendation
scheme to select a chunk retrieval technique, they first have to estimate how uniform the
representation of the failing test cases is in the investigated build logs. As the researcher is
covering a wide range of build tools and development languages, the log chunks they target
are in various, non-predictable structural representations. The next question is whether
they value precision over recall. As they have to manually inspect the results of both CTS
and KWS, they choose recall over precision to avoid having to inspect the whole log in case
the relevant information chunk was not retrieved. Therefore, our decision tree recommends
them to use KWS.

In case the researcher wants to avoid manually inspecting the retrieval results, they have
to first separate the CI build logs according to the test tool responsible for logging the test
results. Then the targeted log chunks are from one structural category and they can use
PBE, trained with examples from each test tool separately.

In our second example, a software development team wants to monitor the performance
of the phases within their CI build. They are using Travis CI, which measures the duration
of build phases and documents them within the build log. As all log statements that report
timing measurements are formatted the same way, the targeted log chunks are from one
structural category. Therefore the development team can use PBE to retrieve the duration
of a build phase as well as its name.

6.3 Threats to Validity

There are several threats to the validity of the conclusions of our work.
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6.3 Threats to Validity

Implementation Our results are highly dependent on our implementation of the investi-
gated chunk retrieval techniques and the libraries we used. Our implementation of PBE is
severely based on the program synthesis provided by PROSE. Its limitations are therefore
also mainly influenced by this library. For example, the need for examples from a single
structural category stems from the fact that FlashExtract cannot learn regular expression
programs with arbitrary boolean conjunctions and disjunctions [45]. This limitation was
necessary to keep the synthesis performance reasonable.

Our implementation of CTS is dependent on the library tex2vec and the way they split
strings into word tokens. We intentionally chose a simple, minimally configured and tuned
approach to compare against. Tuning the text similarity meta-parameters more to the
specific use case of chunk retrieval from build logs would yield better chunk retrieval results.

Data Set The outcomes of our comparison study are highly dependent on the build logs
from the LogChunks data set. It only consists of build logs from open source projects and
therefore it is not clear whether our results are generalizable to industry projects. We only
collected build logs from Travis CI, however we chose to evaluate on an information chunk
whose format is not dependent on Travis CI. This is because the reason the build failed is
described within the build logs by the tools themselves and not the Travis CI environment.

Training Set Size Especially the results for CTS might be influenced by the fact that
we only trained on one to five examples. We chose this small training set size as the
training examples have to be provided per repository and we expect a developer to not
want to provide more examples than the small numbers we evaluated on.

Few Samples with Many Structural Categories Our comparison study shows fewer
measurements with many structural categories than with one category. This stems from
the fact that we use a realistic data set which in many cases has only one or few structural
categories.
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7 Conclusion and Future Work

The goal of this thesis was to support researchers and developers in their decision on
how to analyze build logs. We implemented and compared three different chunk retrieval
techniques on our data set LogChunks, composed of 797 manually labeled build logs from
a broad range of 80 repositories. Our results show that the structural representation of
the targeted information in the build logs is the main factor to consider when choosing a
suitable technique. Secondary factors are the desired confidence into recall and precision
of the produced output and whether precision or recall is more important for the task at
hand.

There are various future research opportunities based on our work:

• Further Analysis of LogChunks We created the LogChunks data set specifically
for our comparative study, though it can be the basis for various further analyses
of build log data. The keywords, for example, can be investigated to answer which
keywords are used to search for the reason the build failed within build logs.
• Cross-Repository Build Log AnalysisWe trained and tested each chunk retrieval
technique on examples from the same repository. We propose to analyze how
techniques could be trained across repositories, building the cornerstones for build
environment-agnostic analysis tools.
• Comparison with more Chunk Retrieval Techniques This thesis investigates

the three chunk retrieval techniques PBE, CTS and KWS. Our study design can be
reused to evaluate other build log analysis techniques, such as the diff and information
retrieval approach by Amar et al. [12].
• Refinement of Retrieval Quality for each Technique We investigated basic

configurations of existing techniques applied to chunk retrieval from build logs. In a
next step, each of these techniques could be refined to better approach the domain
of build logs. The LogChunks data set and our study results act as a baseline to
benchmark such technique improvements. We propose the following improvements:
– Custom Ranking and Tokens for PBE The program synthesis through

PROSE ranks possible programs according to what the user most likely intended.
One could adapt the ranking rules provided by the FlashExtract DSL to fit
common build log chunk retrieval tasks. FlashExtract includes special tokens
when enumerating possible regular expressions. One could extend these with
tokens found in build logs, such as “-”,“=”,“ERROR” or “[OK”.

– Meta-Parameter Optimization for CTS Information retrieval techniques
have various meta-parameters which can be optimized for the specific use
case [56]. We propose to further investigate improvements in preprocessing of
the log text, in tokenization of the log lines into terms and in stop words lists.

• Usability Analysis of Chunk Retrieval Output Our analysis of the output
produced by the chunk retrieval focuses on precision and recall. We propose to
investigate how useful these outputs are to developers through controlled experiments.
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