
Noname manuscript No.
(will be inserted by the editor)

Developer-Centric Test Amplification

The Interplay Between Automatic Generation
and Human Exploration

Carolin Brandt · Andy Zaidman

Received: date / Accepted: date

Abstract Automatically generating test cases for software has been an active
research topic for many years. While current tools can generate powerful re-
gression or crash-reproducing test cases, these are often kept separately from
the maintained test suite. In this paper, we leverage the developer’s familiar-
ity with test cases amplified from existing, manually written developer tests.
Starting from issues reported by developers in previous studies, we investigate
what aspects are important to design a developer-centric test amplification
approach, that provides test cases that are taken over by developers into their
test suite. We conduct 16 semi-structured interviews with software developers
supported by our prototypical designs of a developer-centric test amplifica-
tion approach and a corresponding test exploration tool. We extend the test
amplification tool DSpot, generating test cases that are easier to understand.
Our IntelliJ plugin TestCube empowers developers to explore amplified test
cases from their familiar environment. From our interviews, we gather 52 ob-
servations that we summarize into 23 result categories and give two key rec-
ommendations on how future tool designers can make their tools better suited
for developer-centric test amplification.

Keywords Software Testing · Test Amplification · Test Exploration · Test
Generation · Developer-Centric Design

Carolin Brandt
Delft University of Technology
E-mail: c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology
E-mail: a.e.zaidman@tudelft.nl

https://orcid.org/0000-0001-7623-1970
https://orcid.org/0000-0003-2413-3935

2 Carolin Brandt, Andy Zaidman

1 Introduction

Testing is an important (Whittaker et al., 2012), but time-consuming activity
in software projects (Beller et al., 2015a,b, 2019). Automatic test generation
aims to alleviate this effort by reducing the time developers spend on writ-
ing test cases. The software engineering community has created a plethora of
powerful tools, that can automatically generate JUnit test cases for software
projects written in Java. For example, a widely known tool is EvoSuite (Fraser
and Arcuri, 2011), which generates test cases from scratch using search-based
algorithms. It starts from a group of randomly generated test cases and op-
timizes them by mutating their code and combining them with each other.
This paper focuses on test amplification, a technique that automatically gen-
erates new test cases by adapting existing, manually written test cases (Dan-
glot et al., 2019a). The state-of-the-art test amplification tool DSpot (Danglot
et al., 2019b) mutates the setup phase of manually written test cases and
generates new assertions to test previously untested scenarios. For both Evo-
Suite and DSpot, studies have shown that the tools are effective in generating
or extending test suites to reach a high structural coverage and mutation
score (Danglot et al., 2019b; Fraser and Arcuri, 2011; Rojas et al., 2015; Serra
et al., 2019).

Automatic test generation is, for example, used to detect regressions (Robin-
son et al., 2011), reproduce crashes (Derakhshanfar et al., 2020b,a), uncover
undertested scenarios (STAMP, 2019b) and generate test data (Haq et al.,
2021). For these use cases, it is often sufficient to keep the generated test
cases separate from the manually written and maintained test suite (STAMP,
2019b; Nassif et al., 2021). This separation is reinforced by several hard-to-
solve challenges that limit the understandability of the automatically gener-
ated tests, such as their readability (Daka et al., 2015; Grano et al., 2018)
or generating meaningful names (Zhang et al., 2016; Daka et al., 2017), or
documentation (Roy et al., 2020; Panichella et al., 2016; Bihel and Baudry,
2018).

The amplified test cases created by DSpot are closely based on manually
written ones. This opens up the chance to generate test cases that are easier to
understand by developers, as they are likely familiar with the original test case,
which the amplified test case is based on. In this paper, we want to leverage
this aspect. We take a look at generating amplified test cases that developers
can take over into the manually maintained test suite as if they would have
written them themselves. To describe this kind of test generation we use the
term developer-centric, as the developer accepting the test case is central for
this kind of test generation:

Test amplification is developer-centric if it aims at generating test cases
that are accepted by the developer and taken over into the manually
maintained test suite.

Generated test cases that are accepted by developers and are part of the
maintained test suite also fulfill several further typical uses for developer tests.

Developer-Centric Test Amplification 3

For example, as a form of executable documentation (Hoffman and Strooper,
2003; Beck, 2003; Kochhar et al., 2019), or to locate the fault that causes a
failing test by understanding the test in question (Panichella et al., 2016).

To provide amplified test cases that developers take over into their test
suite, the interaction of the developer with the test amplification tool in which
they review the proposed amplified test cases is critical. In past projects, users
of DSpot reported that the tool was complex to configure and they had to wait
long for the tool to finish and for them to see results (STAMP, 2019b). There
is little support that guides developers through the list of generated test cases
so they can effectively judge whether to keep or discard a newly amplified test
case. To address these issues and realize developer-centric test amplification,
we embed the test amplification tool in a so-called test exploration tool :

A test exploration tool forms the interaction layer between the devel-
oper and the test amplification tool. It lets the developer start the test
amplification tool, and later explore and inspect the different amplified
test cases.

To illustrate how a developer would use a developer-centric test amplifi-
cation approach with a test exploration tool, we introduce an exemplary use
case, which is also illustrated in Figure 1:

Hannah, a software developer, wants to expand the test suite of
the industrial project she is working on to cover more functionality
and give her confidence that they are not breaking important behavior
when changing something. As her management is constantly asking for
new features, she is pressed on time and decides to use an automatic
test amplification tool to improve her project’s test suite. From her
integrated development environment (IDE), she starts the test amplifi-
cation. The tool generates several new test cases for her and notifies her
that it is finished. Hannah inspects the test cases one by one directly
from the test exploration tool integrated into her IDE. The exploration
tool shows her the code of each new test case and where in the produc-
tion code new instructions are covered. Hannah browses through the
new test cases and if she is happy with any test case, she adds it to the
test suite with one click of a button. After exploring all proposed test
cases, she commits her changes and can lean back with the confidence
of a better tested system.

In this paper, we investigate how we should design a developer-centric test
amplification approach to be successful with developers. As automatic test
amplification is not widely used and to prevent re-studying the already known
issues in current tools, we develop prototypes of a developer-centric test ampli-
fication approach and a corresponding test exploration tool. To motivate the
design choices we take for our prototypes, we derive four design intentions from
the test generation literature and the use case we propose for developer-centric
test amplification. Based on these intentions we revise the test amplification

4 Carolin Brandt, Andy Zaidman

① Test ExplorationTool
Developer who
wants to improve start Test
their test suite ② Amplifications Test

• Amplification¥¥¥- Tool

Presents Tests and

Related information⑤ Returns④
Amplified Tests

⑥ E×pLodf• @ Test . . . { Executes
+ coverage

to @ •Judge Proposed
}
:: :

. . . Information
Test cases

• • •

Improves
Test Suite at Add Ignore

Integrate Selected •

Test cases into : : : Prev
.
Next

Manually Maintained . . .

Test suite

Fig. 1: Overview of test amplification with the help of a test exploration tool.

process of DSpot to generate shorter, easier to understand test cases. Our cor-
responding IntelliJ plugin TestCube lets the developer generate and explore
test cases right from their integrated development environment (IDE).

We conduct a qualitative study to explore which aspects of our prototypes
are successful in supporting developer-centric test amplification and uncover
further aspects that should be addressed to realize it.

In previous studies, developers using EvoSuite were “concerned about the
readability of generated unit tests, the generated input data, and the gener-
ated assertions” (Almasi et al., 2017), while DSpot users found it difficult to
understand the generated test cases (STAMP, 2019b). Stemming from these
observations, we investigate in our first research question what developers find
important in the code and behavior of an amplified test case. The answers to
this question give guidance on what factors in amplified test cases are relevant
for developers to include the test cases in their maintained test suite.

Research Question 1
What are the key factors to make amplified test cases suited for developer-
centric test amplification?

In our second research question, we explore how test exploration tools
should be designed to support developer-centric test amplification.

Developer-Centric Test Amplification 5

Research Question 2
What are the key factors to make test exploration tools suited for
developer-centric test amplification?

A powerful capability of such test exploration tools is to provide the devel-
oper with information beyond the test code itself. We already know from test
review that developers are interested in understanding the code under test,
as well as knowing the code coverage of test cases (Spadini et al., 2018). To
deepen our insights into what information test exploration tools should make
accessible to developers, we pose our third research question.

Research Question 3
What information do developers seek while exploring amplified test cases?

Creating a great tool alone is not enough for developers to appreciate
using it. We also need to convey the value our tool brings to them. Therefore
our fourth research question asks what value developers can gain from using
developer-centric test amplification. With the answers to this question, future
tool creators know which benefits they can focus on when they seek to convince
users to start or keep using their tool.

Research Question 4
What value does developer-centric test amplification bring to developers?

To answer these research questions, we conduct semi-structured interviews
with 16 software developers from varied backgrounds. The participants tried
out our prototypes and provided us with rich insights on their impressions of
our prototypes and how we could improve them to better fit their needs. We
group 52 recurring observations from the interviews in 23 result categories for
our four research questions. During the discussion of these results, we identify
two key recommendations on how we should design future developer-centric
test amplification tools.

With this paper, we are taking a step towards developer-centric test am-
plification. In short, we contribute:

– two recommendations on how to design developer-centric test amplification
tools

– a structured overview of the key factors to make amplified tests as well as
test exploration tools suited for developer-centric test amplification

– a refined, developer-centric test amplification approach, based on the DSpot
test amplification

– a developer-oriented test exploration plugin for the IntelliJ IDE

6 Carolin Brandt, Andy Zaidman

2 Creating Developer-Centric Test Amplification

In this paper, we aim to investigate the key aspects that make amplified test
cases and test exploration tools suited for developer-centric test amplification
by conducting semi-structured interviews with software developers. To illus-
trate the concept of test amplification to our participants and receive rich
and concrete input, we want to let them try out a test amplification tool
during the interview. A state-of-the-art test amplification tool is DSpot (Dan-
glot et al., 2019b), which was developed and evaluated during the European
H2020 STAMP project. We adapt DSpot’s amplification process based on the
feedback from the reports of the European project (STAMP, 2019b) and the
requirements posed by our use case of developer-centric test amplification. To
facilitate the interaction of the developer with the test amplification we also
design a prototype of a test exploration tool.

In this section we discuss the inspirations leading to our design of both
prototypes, which is described in Section 3. The goal of this section is to
clarify our reasoning behind the design choices we took and connect them to
the existing literature and user reports about DSpot. We formulate four design
intentions and present their connection to our design choices in Table 1.

A central part of the load on developers comes from them having to un-
derstand the test cases and judge whether they check intended behavior. Ac-
cording to Meszaros, obscure tests that are difficult to understand at a glance
are an anti-pattern, as it makes tests harder to maintain and potential bugs
in the test code more difficult to detect (Meszaros, 2007). As automatically
generating human-readable code is a hard problem to solve, readability and
understandability of generated test cases are recurring topics in developer’s
feedback: developers from the STAMP project stated about DSpot that it was
hard to interpret the tool’s output and the “resulting tests were difficult to
understand for a human developer” (STAMP, 2019b). In some cases, the de-
velopers found the generated tests useful, but so hard to read that they wrote
a corresponding test case themselves. Nevertheless, they were glad that DSpot
pointed to real bugs and supported them in testing exceptional behavior in
systems where only the optimal behavior was tested before. Several previous
works in test generation were concerned with making the generated tests more
understandable for developers (Panichella et al., 2016; Daka et al., 2017; Roy
et al., 2020; Palomba et al., 2016; Rojas et al., 2015). This clearly shows that
we should also take understandability into account while designing our proto-
types. Therefore, our first design intention is to generate test cases that are
understandable for developers.

Intention 1 (I 1)
Generate test cases that are understandable for developers

From literature and our own experiences, we understand that the users
of current test amplification tools face obstacles that lead them to abandon

Developer-Centric Test Amplification 7

automatic test amplification. During the STAMP project (STAMP, 2019b),
various industrial partners noted that DSpot takes very long to generate test
cases. The configuration is overly “complex because of the multitude of possi-
ble parameter values” which require experience to tweak correctly. The high
effort required by users was reported for other test generation tools, too. Pre-
vious studies of EvoSuite pointed out the high load on developers to inspect
generated test suites and to decide if assertions in test cases are correct (Fraser
et al., 2015). They also spend a lot of time analyzing generated test cases to
decide whether to improve or discard them (Fraser et al., 2015) as generated
test cases tend to be less readable than manually written ones (Grano et al.,
2018). That is why another intention leading the design of our prototypes is
to decrease the load on the developers while they use test amplification.

Intention 2 (I 2)
Easy interaction to decrease the load on the developer

Another intention leading our design, is that the amplification process
should be fast enough so that developers can start it and receive new test
cases in the same session. This means, for example, that they do not have to
wait for an external build process to finish. We conjecture that this makes it
easier for them to understand the results and the value of the test amplifica-
tion as they can include it directly while they work on improving their test
suite.

Intention 3 (I 3)
Fast enough for direct interaction

Lastly, it is our intention that the developers can grasp the impact an
amplified test case. They should see the test case as a useful addition when
taken over into their test suite. Impact in this case could refer, for example,
to the coverage, code quality, test code size or test suite runtime. We assume
that understanding the impact is a pre-requisite to deciding whether the test
is useful or not. The test exploration tool should make the impact and the
quality of the amplified test cases clear so that the developers see the value
that the automatic test amplification brings them.

Intention 4 (I 4)
Impact is clear to developers and they find the tests useful

Both (I 2) and (I 4) can not be addressed by modifying the test amplifi-
cation of DSpot itself. Rather this shows the need for a layer in between the
test amplification tool and the developer that facilitates their interaction. This
role is taken by the test exploration tool.

8 Carolin Brandt, Andy Zaidman

Design Choices
Test Generation Test Exploration

(C
1)

(C
2)

(C
3)

(C
4)

(C
5)

(C
6)

(C
7)

(C
8)

(C
9)

(C
10

)

(C
11

)

(C
12

)

(C
13

)

(C
14

)

(C
15

)

Intention A
m

pl
ifi

ca
ti

on

R
em

ov
e

ca
lls

in
si

de
ol

d
as

se
rt

io
ns

O
ne

in
pu

t
m

ut
at

io
n

E
xp

la
na

to
ry

co
m

m
en

ts

O
ne

as
se

rt
io

n
ge

ne
ra

te
d

A
ss

er
ti

on
m

at
ch

in
g

in
pu

t

In
st

ru
ct

io
n

co
ve

ra
ge

L
oo

k
fo

r
ad

di
to

na
lly

co
ve

re
d

in
st

.

R
ep

or
t

co
ve

ra
ge

ID
E

pl
ug

in

St
ar

t
w

it
h

ru
n

B
ac

kg
ro

un
d

ta
sk

D
ef

au
lt

co
nfi

gu
ra

ti
on

C
ov

er
ag

e
in

fo
rm

at
io

n
te

xt

C
ov

er
ag

e
ed

it
or

Generate test cases that
are understandable for
developers (I 1)

x x x x x x

Easy interaction to
decrease the load on
the developer (I 2)

x x x x x

Fast enough for direct
interaction (I 3) x

Impact is clear to
developers and they find
the tests useful (I 4)

x x x x

Table 1: The relation between our design intentions (I 1-4) and the design
choices we take for our developer-centric test amplification and exploration
prototypes (C 1-15).

3 Bringing Test Amplification to the Developer (IDE)

Based on the intentions we defined in Section 2, we develop prototypes for
both a developer-centric test amplification tool as well as a test exploration
tool. We will use these prototypes during our interviews to illustrate a possible
version of developer-centric test amplification. In the following, we present our
design and explain how our choices are motivated by the intentions we set.
Table 1 gives an overview of these choices, which we mark throughout the text
with (C n).

This section starts with a more detailed definition of test amplification and
clarifies why we choose to base our developer-centric test generation on this
technique. We describe how we adapt DSpot to generate test cases that are
better suited to be read by developers. Further, we present our test exploration
tool, the IntelliJ Plugin TestCube , which enables developers to easily use

Developer-Centric Test Amplification 9

our developer-centric test amplification with minimal configuration, right from
their familiar development environment.

Introduction to Test Amplification Test amplification is a term for test gener-
ation techniques that take manually written test cases as their primary input.
Danglot et al. conducted a literature study to map this emerging field and
defined test amplification as follows:

Test amplification consists of exploiting the knowledge of a large num-
ber of test cases, in which developers embed meaningful input data and
expected properties in the form of oracles, in order to enhance these
manually written tests with respect to an engineering goal (e.g., im-
prove coverage of changes or increase the accuracy of fault localiza-
tion). (Danglot et al., 2019a)

For our prototype design we choose test amplification to generate the test
cases. We exploit the existing test cases, as well as the code under test to
create additional test cases that improve the instruction coverage of a test
suite.

We base our approach on test amplification (C 1), because we expect
that for a developer already familiar with the test suite it will be easier to
understand a variation of an existing test case than a completely new one.
In addition, most software projects that are looking to improve their testing
already have at least a rudimentary test suite.

3.1 Developer-Centric Amplification with DSpot

During our interviews, we want to showcase a possible version of developer-
centric amplified test cases to software developers. We adapt Danglot et al.’s
tool DSpot (Danglot et al., 2019b), addressing the issues which were already
reported by developers. Figure 2 gives an overview of our revised test ampli-
fication approach. Starting with the original test case from the existing test
suite, we remove all existing assertions, modify the objects and values in the
setup phase of the test case, add new assertions based on the changed behav-
ior, and select test cases that cover additional instructions in the code under
test.

Our design and implementation is strongly based on Danglot et al. (Dan-
glot et al., 2019b) and DSpot version 3.1.01. We created a fork of their repos-
itory2 and contributed our changes back to DSpot through an accepted pull
request3. In the following, we describe for each step the behavior of the original
amplification as well as the changes we made to generate more understandable
test cases (I 1) and convey their value to developers more easily (I 4). We
illustrate our explanations with a running example in Figures 3, 4, 5 and 6.

1 https://github.com/STAMP-project/dspot/releases/tag/dspot-3.1.0
2 https://github.com/TestShiftProject/dspot/releases/tag/v3.2.0-dev-friendly
3 https://github.com/STAMP-project/dspot/pull/993

https://github.com/STAMP-project/dspot/releases/tag/dspot-3.1.0
https://github.com/TestShiftProject/dspot/releases/tag/v3.2.0-dev-friendly
https://github.com/STAMP-project/dspot/pull/993

10 Carolin Brandt, Andy Zaidman

Evaluation

Original
Test Case

Remove
Assertions

Mutate
Input

Generate
Assertion

.

Select
Test Cases

Amplified
Test Cases

Fig. 2: Overview of our automatic, developer-centric amplification process
within DSpot.

public class AttributeTest {
@Test
public void html() {

Attribute attr = new Attribute("key", "value &");
- assertEquals("key=\"value &\"", attr.html());
- assertEquals(attr.html(), attr.toString());

}
}

Fig. 3: Example amplification: Remove all existing assertions from the original
test case.

3.1.1 Remove Assertions

At the start of the amplification process, DSpot removes all assertions in the
original test case, as they will likely no longer match the new amplified test
case. All method calls within the assertions are preserved because they might
have side effects that influence the rest of the method calls in the test case.

However, these method calls tend to be confusing outside of the context
of the assertion. As the behavior of the test cases is changed through the
amplification anyways, we decide to also remove method calls within assertions
(C 2). Figure 3 shows the first amplification step for our example, where the
two assertions of a test case are removed completely.

3.1.2 Mutate Input

DSpot uses a variety of mutations to explore the input space of a test case.
Literals like integers, booleans, and strings are slightly modified or replaced
by completely random values. On existing objects, the input amplification
removes, duplicates, or adds new method calls. It can also create new objects
or literals that are then used as parameters for mutated method calls.

Our developer-centric amplification leverages the powerful input mutations
of DSpot. However, from Grano et al. we know that the more complex a test
case is, the harder it is to understand for a developer (Grano et al., 2020). To
make the generated test case easier to understand for the developer, we focus
on one input modification at a time (C 3) and add an explanatory comment
to every mutation (C 4). We make use of all available mutation operations in
DSpot 3.1.0. In Figure 4 one of the string parameters in the constructor for

Developer-Centric Test Amplification 11

public class AttributeTest {
@Test
public void html() {

- Attribute attr = new Attribute("key", "value &");
+ // FastLiteralAmplifier: change string from ’value &’ to ’Hello\nthereNBSP’
+ Attribute attr = new Attribute("key", "Hello\nthereNBSP");

}
}

Fig. 4: Example amplification: Mutate string parameter in the constructor of
the object under test.

the object attr is replaced with a new string that contains the special non-
breaking space character. We also add a comment that details which value was
changed to which new value to help the developer spot the change easily.

3.1.3 Generate Assertion

Generating new assertions is one of the central features of DSpot. The tool
instruments the test case to observe the state of the objects under test after
the setup phase. Then it generates assertions comparing the return value of
every method call on the objects under test with the observed value. While
adding all generated assertions leads to a more powerful test case with respect
to structural coverage, it also makes the test case hard to understand and
unclear which of the added assertions improve these metrics. To minimize
the generated test cases, DSpot provides a prettifier stage. It removes the
assertions one by one, reruns the metric calculation, and adds the assertion
back if the score decreased. Unfortunately, the stage multiplies the already
long runtime of DSpot.

To generate shorter, more understandable test cases (I 1), we opt to only
add one assertion to each test case (C 5). While this at first generates more
test cases, the ones with assertions that do not improve the final selection
metric are excluded in the following step. To produce test cases that devel-
opers find useful (I 4), the generated assertion should assert a behavior that
changed through the previously mutated input. To achieve this, we compare
all assertion candidates before and after the mutation and only include an
assertion if the value it asserts changed through the mutation (C 6).

As shown in Figure 5, the assertion generated for our example checks the re-
turn value of attr.toString(), which shows the changed input "Hello\\nthere
NBSP".

3.1.4 Select Test Cases

After generating a broad range of test cases through mutating input values
and generating assertions, DSpot selects which test cases to keep. Depend-
ing on the configuration, DSpot selects test cases that improve instruction
coverage, improve mutation score, or cover the changes in a specific commit.

12 Carolin Brandt, Andy Zaidman

public class AttributeTest {
@Test
public void html() {

// FastLiteralAmplifier: change string from ’value &’ to ’Hello\nthereNBSP’
Attribute attr = new Attribute("key", "Hello\nthereNBSP");

+ Assertions.assertEquals("key=\"Hello\nthere \"", ((Attribute) (attr)).
↪→ toString());

}
}

Fig. 5: Example amplification: Generate an assertion which checks a behavior
changed by mutating the input.

Amplified test case ’html_literalMutationString19_assSep92’
This test case improves the coverage in these classes/methods/lines:
org.jsoup.nodes.Entities:
escape
L. 197 +3 instr.
L. 198 +5 instr.

Fig. 6: Example amplification: Information about the coverage improvement
of the amplified test case.

As determining the mutation score is computationally expensive, it is cur-
rently not a feasible option if the test generation should run on the developer’s
local computer and we want to enable direct interaction with as little wait time
as possible (I 3). Therefore, we select test cases based on instruction coverage
(C 7).

DSpot originally keeps all generated test cases that by themselves cover
more lines than the original test case they are based on. However, for a devel-
oper, it is not important that the coverage of one test case is high. Rather, a
new test case should contribute additional coverage to the test suite. To deter-
mine this, we measure the instruction coverage of the original test suite on a
fine-grained, line-by-line basis. For each generated test case, we check whether
it covers additional instructions on any line (C 8). If that is the case, we keep
the test case, if not, we discard it. The combination of this fine-grained cover-
age comparison together with the small number of additions we make to the
original test case (C 3) (C 5) enables us to generate smaller test cases (I 2)
compared to DSpot. Furthermore, these test cases have a local and therefore
easier to understand impact on the coverage of the test suite (I 4).

To communicate to the developer which additional instructions are covered,
our developer-centric amplification reports for each test case in which lines
in the production code additional instructions are covered (C 9). Figure 6
shows a pretty-printed version of the additional information we provide. The
amplified test case in our example covers 8 more instructions over two lines in
the escape method of the Entities class.

Developer-Centric Test Amplification 13

Fig. 7: Overview of the interaction with the TestCube plugin.

3.2 Test Exploration Plugin TestCube

For successful developer-centric test amplification, we conjecture that the sec-
ond important step to support developers with amplification test cases is explo-
ration. In this section, we describe the design of our prototype of a developer-
centric test exploration tool: TestCube . To make our new, powerful test
amplification easily accessible to developers (I 2), we develop TestCube as
a plugin to the IntelliJ IDE (C 10). A lot of previous research points out
the importance of integrating tools into existing development environments.
It reduces time and focus lost by switching tools (Liu and Holmes, 2020)
and enables developers to inspect test cases and related code (Spadini et al.,
2018). TestCube is open source4 and available to download on the Jet-
Brains Marketplace5. The screenshot in Figure 7 illustrates the user interface
of TestCube and how a developer would interact with it. In the following, we
present how developers can use TestCube to amplify tests right from their
editor, inspect the generated test cases and easily integrate them into their
code base.

3.2.1 Starting the Amplification

After installing TestCube , the developer can start the amplification in the
same way as she would execute a JUnit test (C 11). She picks an original
test case to be the input for the amplification process (1○ in Figure 7). Then
she can click on the green arrow next to the test, and select the new option
‘Amplify’ (2○ in Figure 7). After she selects this option, TestCube starts
amplifying the test in a background task (C 12).

For other test generation tools, research has shown that even though tuning
parameters to the specific project increases performance, using the default

4 https://github.com/TestShiftProject/test-cube
5 https://plugins.jetbrains.com/plugin/14678-test-cube

https://github.com/TestShiftProject/test-cube
https://plugins.jetbrains.com/plugin/14678-test-cube

14 Carolin Brandt, Andy Zaidman

settings already produces good results (Arcuri and Fraser, 2013). To take the
configuration burden off the developer as much as possible (I 2) during our
interviews and to evaluate how well our new approach performs with its default
configuration, we choose to set default values for the vast number of DSpot
parameters (C 13).

3.2.2 Result Inspection

When the amplification finishes, TestCube notifies the developer with a pop-
up from the built-in notification system (3○ in Figure 7). The developer can
then choose to inspect the test cases or, in case of reported errors, the terminal
output of DSpot.

We present the results of the test amplification within IntelliJ, but in a
tool window separated from the code. The tool window is located on the right,
next to the editor with the original test case selected by the developer. It has
various components:

– At the top of the tool window we present information about the currently
selected amplified test case (4○ in Figure 7): Which modifications were
applied to it and which additional instructions are covered (C 14).

– Next we present navigation buttons to the developer (6○ in Figure 7). With
these buttons, the developer cycles through the proposed test cases, can
add the current test to the test suite, ignore the current test or close the
amplification results all together.

– Below the navigation buttons we present the amplified test cases in a fully
functioning editor, as shown in (5○ in Figure 7). The developer can edit the
test case in their familiar environment and use code navigation to inspect
called methods.

– The developer can click on the additionally covered lines in the test case
information to open up the coverage inspection editor on the bottom of the
tool window. The editor shows the class where coverage was improved and
highlights all additionally covered lines in green (C 15). Showing the added
coverage in the context of the code under test should help the developer
judge the value of the generated test case (I 4).

4 Study Design

The goal of this paper is to explore which aspects are important to create a suc-
cessful developer-centric test amplification approach. To this end, we invited
16 software developers to try out our prototype TestCube on an example
project. We observed their interaction with the tool and interviewed them
on their experience and opinions on how an ideal test generation tool should
behave. We report our observations split along four sub-questions: With the
interviews we investigate what makes amplified tests (RQ1) and exploration
tools (RQ2) suited for developer-centric test amplification, what information
the developers are seeking while investigating the test cases (RQ3) and what

Developer-Centric Test Amplification 15

value developers see in test amplification (RQ4). In the following we describe
the design of our interview study: How we recruit participants and ask for
their consent, our technical setup, the flow of one interview as well as our data
collection and analysis process.

Research Questions

RQ1: What are the key factors to make amplified test cases suited
for developer-centric test amplification?

RQ2: What are the key factors to make test exploration tools suited
for developer-centric test amplification?

RQ3: What information do developers seek while exploring amplified
test cases?

RQ4: What value does developer-centric test amplification bring to
developers?

4.1 Preparation

We used convenience sampling to recruit participants for our interviews. We
posted about it on Twitter6 and wrote to existing industry contacts. In addi-
tion, we contacted participants of a previous survey about motivation to write
test cases who indicated to be open for a follow-up interview.

As we are conducting a study with human participants, we followed the
guidelines of the TU Delft’s Human Research Ethics Council7 and submitted
our study design to them for review. Before each interview, we explained to the
interviewees how we will process their data and asked for consent on participat-
ing in the interview, recording the session for later analysis and publishing the
anonymized results in an online research repository. One participant wished
to not be quoted and the corresponding results not to be published in a re-
search repository, therefore our online appendix (Brandt and Zaidman, 2021)
excludes the data collected from that interview.

To showcase TestCube to our participants, we selected the open-source
HTML parser jsoup8. Jsoup is a mid-sized Java project (35K lines of code),
which is built with Maven, tested with JUnit 5 and was part of Danglot et
al.’s evaluation of DSpot (Danglot et al., 2019b). We chose it because we
expected HTML to be a relatively simple and widely understood application
domain, which would require less time to explain to our participants during the
interviews. Jsoup has a test suite with a relatively good instruction coverage of
86%. Our interviews focused on the classes Attribute and AttributeTest, as we
expected the concept of an HTML attribute to be known by our participants.

6 https://twitter.com/laci_noire/status/1328334375537299461, showed to 9.527 users, 406
interactions

7 https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/
human-research-ethics, last visited March 1st, 2021

8 https://github.com/jhy/jsoup

https://twitter.com/laci_noire/status/1328334375537299461
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://github.com/jhy/jsoup

16 Carolin Brandt, Andy Zaidman

Attribute is fairly well tested, with most functions covered by the test suite.
However, its custom implementation of hashCode, clone and several branches
in equals were not covered.

To take the setup burden off of our participants, we set up an instance of
IntelliJ with our plugin on a server and let the interviewees interact with it
through the browser. This was possible through the JetBrains Projector tool9.

4.2 Interview Procedure

To get a rough context of the participant’s opinion on and knowledge about
software testing, we asked an open question about the participant’s prior ex-
periences with testing software. Then we briefly introduced test amplification:
automatically modifying existing test cases to generate new ones that improve
the coverage and can be taken over into the test suite. We explained that the
goal of the interview is to see their interaction with our tool and gather feed-
back on what aspects they like, what they would change, and how they would
use such a test amplification tool in their work. We sent the developers a link
to our online setup of IntelliJ which they accessed through their browser. We
introduced the example project and explained how to start TestCube . From
this point on we invited the interviewee to explore on their own, thinking aloud
about all their thoughts and impressions. We did not define an explicit task
to solve, rather our introduction of test amplification and the user interface of
TestCube animated the participants to browse through the test cases and
judge whether to include them, and in some cases include them in the test
suite of the example project. We kept any more explanations to a minimum
to observe a situation as close as possible to the developer interacting with
the tool alone. We let each participant amplify and browse through several
test cases for about twenty minutes. During this time we ask them to think
aloud about their impressions. We nudge them by asking questions about their
actions and opinions on TestCube ’s behavior. At the end we asked them
to fill out the System Usability Score questionnaire, a metric frequently used
in the field of Human-Computer Interaction to assess how useable a product
is (Bangor et al., 2008). While filling out the questionnaire, we ask them to
reflect on the usability of the plugin and how it could be adapted to better fit
their needs.

4.3 Data Collection and Analysis

We recorded all interviews, including the screen of the developer while they
were interacting with TestCube . In addition, the interviewer took extensive
notes. We performed open coding (Corbin and Strauss, 1990) to analyze the
interview notes, checking back with the recording when anything was unclear
or missing from the notes. Following that, we applied axial coding (Corbin and

9 https://jetbrains.github.io/projector-client/mkdocs/latest/

https://jetbrains.github.io/projector-client/mkdocs/latest/

Developer-Centric Test Amplification 17

Strauss, 1990) to structure the emerged codes. We report our findings along
these axial codes, which we assigned to each of the research questions. Table 2
presents the axial codes arising from our analysis of the interviews.

All interviews and the initial coding were performed by the first author.
To increase the validity of our analysis, the second author watched two of
the performed interviews, took notes and coded them separately. Then we
compared the codes both authors created for the validation interview and
refined our coding schema and our interpretations of the interviews. We saw
that both focused on different aspects of the interviews, one assigning about
20 codes and the other one about 10 codes per interview. In total, we agreed
on 90% of the assigned codes in the first validation step. As a second validation
step, we performed an inter-rater reliability analysis. We selected re-occurring
topics from our codes that appear in 4 or more interviews. The second author
assigned them to 3 further interviews. To compare the assignments of both
authors, we calculate the percentage agreement (70%) and Cohen’s Kappa
(60%, moderate agreement). The value of Cohen’s Kappa is relatively low,
because some of the codes we validate have skewed values. If a code appears
in nearly all the cross-validated interviews, its chance of appearance is close to
one, leading to a small Cohen’s Kappa because arithmetically the agreement
could be a coincidence. We provide our code book together with the code’s
frequencies in the interviews, as well as our cross-validation ratings in our
online appendix (Brandt and Zaidman, 2021).

5 Results

In this section, we present the results we elicited from our study. Firstly, we
give an overview of key demographic factors characterizing our study partici-
pants. Secondly, we detail what factors are important to the developers when
it comes to the generated test cases themselves (RQ1) and which aspects
make a test exploration tool developer-friendly (RQ2). Next, we describe the
various kinds of information the developers sought while exploring the gener-
ated test cases (RQ3) and what value our interviewees saw in automatic test
generation (RQ4). Every observation that comes from the interviews will be
labeled with (O n) and if it is directly tied to one of the codes we assigned,
we also report its support, i.e., in how many interviews we observed it. The
observations without explicitly mentioned support summarize multiple codes,
describe anecdotal evidence or report general impressions we obtained over-
arching the single interviews. Even though we cannot link them to a specific
code from our interview notes, we still consider them valuable to report for
our qualitative study.

While high support signals that a topic is very relevant for our participants,
we cannot infer from a small support number that an aspect is less relevant. As
we wanted to explore as many aspects of developer-centric test amplification
as possible, we mainly let the comments of our participants guide the direction
of the interviews, similar to an unstructured interview (Zhang and Wildemuth,

18 Carolin Brandt, Andy Zaidman

Identifiers
ConciseCode
Consistent

Relevant
Invariant

Generated Test Cases
RQ1

Behavior
Diverging

Minimal Configuration
IntegrationEase of Use
Usability

Information Management
Focus

Runtime

Exploration Tools
RQ2

Expectation Management Capabilities

Behavior / Intent
OutcomeTest Case
Runtime

Code Under Test
Coverage

Sought Information
RQ3

Original Test Case

Ease Test EngineeringImprove Test Suite Inspiration

Learning
Value for Developers

RQ4
Confidence

Table 2: Structured overview of the answers to our research questions. Shown
are the axial codes we obtained during our data analysis described in Sec-
tion 4.3.

2009). This lead to many observations only appearing in a small number of
interviews, possibly because the topic they concerned was only reached in a
small number of interviews.

Throughout this section, we structure our explanation along the axial codes
of our results presented in Table 2.

5.1 Participants

We recruited 16 participants for our study, whose demographics are summa-
rized in Figure 8. As shown in Figure 8a, their previous experience with soft-
ware development was distributed in a range from two to 23 years. Most of
them work in teams of two to nine and consider Java to be among their primary
programming languages. Our participants work in a wide variety of industries,
which are presented in Figure 8d.

Developer-Centric Test Amplification 19

0

1,5

3

4,5

6

2 - 5 6 - 10 15 - 23

(a) Years of Experience

0

3

6

9

12

1 2-9 10-19

(b) Team Size

Java
Python

TypeScript
Rust

Go
JavaScript

C#
Scala
Ruby

Groovy
0 3 6 9 12

(c) Primary Languages

Software development - other
Consulting

Research - academic or scientific
Web development or design

Internet
Software as a service (saas) development

Data and analytics
Manufacturing

Security
Transportation

0 1 2 3 4

(d) Industry Domain

Fig. 8: Summarized demographics of our interview participants.

5.2 RQ1: What Are the Key Factors to Make Amplified Test Cases Suited
for Developer-Centric Test Amplification?

During the interviews, it quickly became clear to us how important the test
cases themselves are for the developers. Many of our participants were directly
focusing on the test cases and spend much of their time praising or critiquing
them (O 1). This is reflected in the large number of observations with high
support we present in this section. What unified our participants is that they
tried to understand the generated test cases (O 2). Rojas et al. also noted
that how easy it is to obtain the intent and behavior of a test case is a strong
indicator for its quality (Rojas et al., 2015).

Code: Identifiers Looking at the code of the test cases, the most preva-
lent comment was the need for less cryptic identifiers (O 3, Support: 14).
The developers wished that the identifiers, such as the test name or variable
names, convey the intent of the new test case (O 4, Support: 2). They gave
examples such as which code is additionally covered or simply which methods
are newly called. More expressive identifiers would help them understand the
intent of the test case faster. While integrating the test cases, many partic-
ipants renamed the test cases (Support: 7) and the used variable identifiers
(Support: 3). For identifier names that should be renamed by the developer
during the inspection, two participants promoted a clearer naming such as
“placeholderN”.

20 Carolin Brandt, Andy Zaidman

Code: Concise We observed that the code should be as concise as possible.
Developers were confused by unnecessary statements (O 5, Support: 7),
which were left over from the amplification process. Underneath them were
object initializations or method calls no longer relevant for the intent of the new
test case. The developers needed additional time to detect these statements as
unimportant and to delete them (O 6, Support: 3).

We saw a similar effect with unnecessary casts (O 7, Support: 8) in-
troduced by DSpot for type safety. In many cases, the casts could be identified
as superfluous, but the developers were unhappy that extra work is necessary
to remove obviously superfluous code.

For generated assertions that check the return value of a function, DSpot
actively splits the function call and the assertion through a variable declara-
tion. While one participant preferred this step for clarity and would find it
easier to understand with an expressive variable name, three other partici-
pants were annoyed by the additional bloating of the code (O 8, Support: 3).
While inlining the variable declaration a participant even pointed out that
splitting the function call from the assert statement lead to less power-
ful assertions being used (O 9). Instead of assertNotEquals the test used
assertFalse, which gives a much less expressive error message in case the
assertion fails. assertNotEquals throws a org.junit.ComparisonFailure and
prints the expected and actual values, while assertFalse simply throws an
java.lang.AssertionError at the line of the assertion.

Another issue brought up by the developers was concise input strings.
To generate parameters while creating new objects for the setup phase of a
test case, DSpot can generate unnecessarily long random strings of characters
(O 10, Support: 2). To understand the test’s behavior, developers now would
need to know which of these characters are important for the intent of the
test case, which takes a lot of time and effort. In one case we observed, DSpot
created a new object and checked that it is not equal to the existing one.
The developer spent a lot of time going through the various special characters
in the constructor parameters for the new object, trying to determine which
one is triggering the behavior of the test case. In the end, none of the special
characters were necessary, the strings simply had to be different from the
strings initializing the existing object. This anecdote points to the need for
minimizing input values in generated test cases, which was also pointed out
by Fraser et al. (Fraser and Arcuri, 2013)

Code: Consistent Apart from the need for the test code to have a high
quality Athanasiou et al. (2014) itself, it should also be consistent with the
rest of the test suite. Three participants pointed out that the assertion methods
were fully qualified instead of statically imported, like in the original test case
(O 11, Support: 3). A similar comment was made for the identifiers, which
one participant wanted to be in the same naming schema as existing test cases.

Behavior: Relevant Moving to the behavior of the test cases, we saw that
it is important to test methods relevant to the developers. As our example

Developer-Centric Test Amplification 21

project already had a relatively good test suite covering most core functions
of the class, many of the proposed test cases covered extra branches in equals,
hashCode or clone. The initial reaction of various participants was “I would
not test this method” (O 12, Support: 11), leading some to discard the test
directly. Others investigated further and uncovered that hashCode was over-
written with a custom implementation, which for one participant meant it was
relevant after all to test the method. We believe that it is not only important
to focus on testing methods important to the developer, such as core functions
defined in a class, but also to make it clear why a newly covered function is
considered important, e.g., because it overwrites the defaults with a custom
implementation. How many interesting test cases are proposed was an im-
portant point for the developers we interviewed, this would majorly influence
whether they keep using TestCube (O 13, Support: 4).

Behavior: Invariant A further comment on the behavior of the generated
test cases was that developers would like them to test invariants of methods
instead of absolute values (O 14, Support: 8). The most prominent example
being hashCode. As other test generation tools, DSpot uses the current behavior
of a system as an oracle. To test hashCode, it calls the method on an object
and creates an assertion comparing the resulting value to the return value of
hashCode. This is a fragile test case, as the hashCode changes as soon as any
changes are made to the class’s attributes. Our participants advocated testing
the invariant of hashCode instead of an absolute value. Interestingly though,
they proposed a variety of ways how to test this invariant: Cloning an object
and checking the hashCode is still the same (as well as that they are equals),
creating the same object twice and compare the hashCode, check that if equals
is true the hashCode is also the same, or even creating random objects and
verifying that only a few of them lead to hashCode collisions. While proposing
amplified test cases to open source projects, Danglot et al. also saw diverging
reactions to test cases testing hashCode (Danglot et al., 2019b).

Behavior: Diverging One of our observations that is special to test am-
plification is how far the behavior of the generated test case should diverge
from the original test case (O 15, Support: 6). Some of our participants were
enthusiastic that the generated test cases explored so many new paths and
scenarios, even naming this as one of the key strengths of TestCube . Others
were confused by this divergence as they mainly focused on comparing the
behavior of both test cases. The most severe cases of such a divergence ap-
proach when the original test case involves objects from another class than
the class under test. Some of the amplified test cases then test functionality in
this other class and completely disregard the original class under test (O 16,
Support: 3). While these tests can be valid and helpful additions to the test
suite, our participants mostly disliked them, because they were focussing on
testing the original class under test. In a future version of TestCube , tests
for another focal class should be marked as such and proposed to be added to
the fitting test class.

22 Carolin Brandt, Andy Zaidman

RQ1: The Key Factors to Make Amplified Test
Cases Suited for Developer-Centric Test

Amplification

Summarizing the results and observations described in this section, the
key factors to make amplified test cases suited for developer-centric
test amplification are concerned with the code and the behavior of
the test cases. When it comes to code, the variable identifiers and
test names should be meaningful, the code should be short and con-
cise, and consistent in terms of quality and style with the rest of the
test suite. With respect to its behavior, an amplified test case should
execute scenarios that are relevant for the developer, should test in-
variants in place of absolute values where possible, and should match
the developer’s expectation in terms of divergence from the original
test case.

5.3 RQ2: What Are the Key Factors to Make Test Exploration Tools Suited
for Developer-Centric Test Amplification?

To enable developers to interact with and judge the amplified test cases, we
created a test exploration tool. In the following, we will explain our observa-
tions from the interviews on what factors are important for such a tool to be
suited for developer-centric test amplification.

Ease of Use: Minimal Configuration First and foremost, a test explo-
ration tool should be easy to use and especially easy to start. Our approach
of using a default configuration was successful, two of our participants
pointed out how little effort was needed from their side to get started (O 17,
Support: 2). Some still noted concerns about how easy the tool would be to
set up locally for their projects (O 18, Support: 2), so clear supporting docu-
mentation is important if one wants to let the developer try out and discover
a tool all by themselves.

Ease of Use: Integration A factor that helped developers start up and
explore TestCube so quickly was its tight integration with IntelliJ (O 19,
Support: 3). Participants noted that it was easy to start from the “run test”
location, two made use of the built-in code navigation to explore the code
under test (O 20, Support: 2) and one liked that they could perform all actions
without having to switch tools (O 21, Support: 1).

Ease of Use: Usability In addition to minimal configuration and being
integrated, a developer-centric exploration tool should also adhere to the long-
established criteria for usability from Human-Computer-Interaction research (Be-
van, 2001). We have seen that it is important to give the developer control
over the layout of TestCube : various participants had different wishes for

Developer-Centric Test Amplification 23

which information they want to see and how much space the tool should take
up on their screen (O 22, Support: 1 each from 5 codes). Some were looking
for buttons to close, e.g., the coverage editor they no longer needed (Support:
3) or got confused after they could not undo an unintentional action (Support:
3). We believe it is crucial for a successful tool to give the developer options
to configure the layout of the tool to fit their needs and let them recover from
errors.

With the help of the System Usability Score, we evaluated the overall us-
ability of TestCube . 44% of our participants rated the usability as “Excel-
lent”, 38% as “Good” and 19% as “Poor”. This shows that even with the above
mentioned issues, we overall succeeded in creating a tool that is easy to use.

Information Management We observed big difficulties with managing
the information TestCube is displaying for developers. The text detailing
which instructions are additionally covered was overlooked by many study
participants, some later said they thought it is “unimportant debug output”
(O 23, Support: 3). Providing the information sought out by developers in a
way that does not overwhelm them and is accessible to them where they expect
it is one of the big challenges looking at future versions of TestCube . Also
the number of generated test cases should not be too large (O 24, Support:
4). For some methods, over fifty new test cases were proposed that one by one
tested a previously uncovered class. One participant said they lost interest
after looking over several of these test cases and seeing how many were left
(O 25, Support: 1). An effective test exploration tool should focus on a few
impacting test cases to not overwhelm the developer and keep each interaction
session compact. Additionally it would help to rank the generated test cases
and show the most impactful ones first.

Focus Related to information management is also the issue of focus. Through
nearly each one of our interviews, we saw how important it is to only show
information to the developer which they are supposed to focus on in that mo-
ment. In the current design of TestCube , the amplified test cases are all part
of the same text file presented at once in an editor. This means that multiple
tests are visible at the same time. While TestCube ’s internal navigation,
e.g., the coverage information and the automatic adding to the test suite, was
focused only on the first test case at the start, many of our participants started
scrolling through the list of test cases immediately (O 26, Support: 5). Later
some of them were confused (O 27, Support: 3), as they tried to add the
test case they were currently focussing on to the test suite, while TestCube
copied over the first one in the list. It is therefore extremely important for a
future test exploration tool to make sure the focus of the developer aligns with
the focus of the tool. For example, by only showing the code of one test at a
time and therefore forcing the user to click on the next and previous buttons
to explore the generated test cases.

24 Carolin Brandt, Andy Zaidman

Manage Expectations: Runtime A test exploration tool should manage
the expectations of its users. We observed this with the runtime of the
amplification process. Even though we took care in our configuration to keep
the runtime of DSpot as low as possible, in some cases the generation still took
several minutes to complete, which four participants considered as too long
(O 28, Support: 4). While we included a business indicator that signaled to
the developers that the amplification is running a background task, many were
wondering how long it will take before they get results. Our participants wished
for an expressive progress bar that either gives an estimation of the remaining
time or at least shows an approximated form of progress (O 29, Support: 2).
Some were wondering whether, or even expecting that, it is possible to switch
to another task while they were waiting.

Manage Expectations: Capabilities The expectations with respect to the
capabilities of a tool should also be correctly set. As we gave the developers
only a minimal introduction to the tool, it was not clear for some whether
the generated test cases are meant to replace the existing test case or are
meant to be an addition to the test suite. Toward the end of their interviews,
participants pointed out that they slowly understand the power of the tool
better and see clearer how they would employ it (O 30). One pointed out
that the generated test cases were much more appreciated by him now that
he understood the editing effort which was necessary before including them.

Overall, we observed a plethora of important aspects to make a test ex-
ploration tool developer-centric. It should be easy to start and use, the way
of displaying information needs to be carefully chosen, it has to keep track
of the focus of the developer and manage the user’s expectations towards its
capabilities and runtime.

RQ2: The Key Factors to Make Test Exploration
Tools Suited for Developer-Centric Test

Amplification

In summary, a key factor to make test exploration tools suited for
developer-centric test amplification is making the tool easy to use:
through minimal configuration, through a tight integration into the
developer’s existing environment and through adhering to established
usability principles. Such tools should manage the information they
present to the developer and help the developer focus on the informa-
tion they need for their current task. Further, a test exploration tool
should manage the expectations their users have towards the runtime
and the capabilities of the tool to ensure that these expectations can
be fulfilled.

Developer-Centric Test Amplification 25

5.4 RQ3: What Information Do Developers Seek While Exploring Amplified
Test Cases?

While exploring the generated test cases, our participants did not only scru-
tinize the test code itself but were also looking for and asking about a lot of
additional information. We saw that it is crucial to provide quick and familiar
ways for developers to provide this information so they can efficiently decide
on whether to keep or how to adapt an amplified test case.

Test Case: Behavior / Intent As mentioned in Section 5.2, the test cases
themselves and their behavior or rather their intent were a main focus of
the developers. After making edits to a test case, one participant wondered
whether the original intent of the generated case was still preserved (O 31,
Support: 1). This is in line with Grano et al.’s results: developers are concerned
with determining whether a unit test “actually exercises the corresponding
unit” and how many relevant scenarios are covered (Grano et al., 2020). Prado
and Vincenzi showed that the code of a test case is one of the main sources of
information about a test case for the developer (Prado and Vincenzi, 2018),
an observation corroborated by Aniche et al. (Aniche et al., -). As far as we
observed, the current editor displaying the code of the generated test case is
enough to satisfy this information need for developers.

Test Case: Outcome Furthermore, the developers were interested in the
outcome generated test cases (O 32, Support: 3), i.e., whether they are
passing or failing. As all test cases generated by DSpot pass, this could be
addressed by a better explanation of the tool. Alternatively, tool developers
could provide the existing IDE utility to run a test case in the editor propos-
ing the new test case or provide functionality such as Infinitest, a tool that
runs JUnit tests continuously in the background (Infinitest, 2021). This would
allow the developer to easily check that a test case is still passing after editing
it and before integrating it to the test suite.

Test Case: Runtime The runtime of a test case was also pointed out by
one of our participants (O 33, Support: 1), as they were used to projects where
increasing the runtime of the continuous integration build was frowned upon.
Test exploration tools should include a note about the measured execution
time with each test case.

Code Under Test While inspecting the new test cases, most of our partici-
pants quickly jumped to also inspecting the code under test. Two were trying
to understand its behavior (O 34, Support: 2) to see the intent of the test
case and to judge whether the additional coverage was relevant. Also, they
checked if the tested method overrides standard behavior and if exceptions
were thrown and tested. As Spadini et al. already pointed out, it is crucial for
test review tools to provide easy navigation between test code and the code
under test (Spadini et al., 2018). Prado and Vincenzi point out that developers

26 Carolin Brandt, Andy Zaidman

should receive tool support to build the context between test code and code
under test (Prado and Vincenzi, 2018). Through reusing the standard editor
component of IntelliJ, TestCube allows its users to use their familiar code
navigation tools, such as command-click to go to the definition of a method.

Coverage The third large area developers wondered about was coverage.
Under this falls the original coverage of the test suite and which additional
coverage each generated test case and all the generated test cases together
yield. A recurring question was whether a functionality covered by the gener-
ated test cases was already covered by another test case (O 35, Support: 2).
Developers scanned the test suite to find other tests calling the same method.
Even though TestCube provides detailed information on which instructions
are additionally covered by the new test case, not all participants understood
that this implies the instructions were not covered by any existing test case.
The developer that found our visualization of the added coverage, found it
helpful to see the covered lines not only as numbers but also in the code
context (O 36, Support: 1). They wished for a separate report of the orig-
inal instruction coverage and the improvement of instruction coverage after
including the amplified test cases. We also observed two times that the de-
velopers used the coverage of a test case to infer its intent (O 37, Support:
2), an observation also made by Grano et al. (Grano et al., 2020). Sometimes
it was unclear to our participants why the new code covers these additional
instructions (O 38, Support: 3). This points towards a need for exploration
tools to visualize clearer how test code and code under test connect.

Instruction coverage seemed to be a satisfying metric for most of our partic-
ipants. Some of them wished for more information about how many branches
are covered or hoped the tool would help them cover all branches as they
would aim for while writing unit tests themselves. Even though some of our
participants were aware of the concept of mutation score, none of them asked
for information about improved mutation score or for test cases that kill addi-
tional mutants. Rojas et al. saw that in an industrial context many developers
used coverage to evaluate a generated test case (Rojas et al., 2015).

Original Test Case Special for the case of test amplification, was the inter-
est of the participants to inspect the original test case that was the basis for
the amplification. They tried to understand the intent of the original test case
(O 39, Support: 5) and used this information, together with the knowledge
of which instructions were changed to determine the behavior of the amplified
test cases (O 40, Support: 2). Highlighting the changes from the original to
the generated test case through comments (C 4) was not successful in our
study. The developers ignored them and questioned their usefulness (O 41).
We hypothesize that the generated test cases were short enough to spot the
changes without the comments.

Developer-Centric Test Amplification 27

RQ3: The Information Developers Seek While
Exploring Amplified Test Cases

In our interviews we observed that developers are interested in a wide
array of information while exploring and inspecting amplified test
cases. For a test case itself, developers try to understand its behavior
and intent, ask whether it is passing and how long it takes to execute.
Beyond the test case, they are concerned with the code under test,
the original and added coverage as well as the original test case the
amplification was based on.

5.5 RQ4: What Value Does Developer-Centric Test Amplification Bring to
Developers?

One way to make developer-centric test amplification successful, is to bring
across the value they can expect from the amplified test cases and from using
the test amplification tool. To give us an indication, which values we should
focus on, we collected comments from our participants about the benefits they
believe they would achieve from using a tool similar to TestCube .

Improve Test Suite: Ease Test Engineering First and foremost, auto-
matic test amplification would help them improve their test suite. By
proposing complete, ready-to-run test cases that cover more code or inter-
esting behavior (O 42, Support: 4), automatic test amplification eases test
engineering for developers. The test amplification alleviates the developer
from having to write test cases from scratch, reducing the effort necessary to
develop a test suite. Reducing effort is a concern for developers: one partici-
pant stated, that they would “either look for less work or for tests with a better
quality” (O 46, Support: 1).

Improve Test Suite: Inspiration The generated test cases also provided
inspiration. Several users created new test cases to cover the behavior of
the amplified test cases (O 47, Support: 4). They were glad to be pointed
to untested code paths (O 43, Support: 4) and to unexpected scenarios that
could happen in the system (O 44, Support: 1). A recurring comment was that
a test covers methods the participant always forgets to test (O 45, Support:
3). By proposing new scenarios with the generated test cases, test amplification
tools can take the burden of designing test scenarios of the developers.

Learning Packaging test case generation in an easily accessible plugin can be
a valuable step to enable more developers to learn about test amplification
itself. Many of our participants did not know about the technique of test
amplification before and one said that a plugin like TestCube could be
a way to bring this idea into industry (O 48). The participants got more

28 Carolin Brandt, Andy Zaidman

Recommendation Corresponding Observations

Recommendation 1: Consider the interaction
of the developer with the test cases: provide a
test exploration tool that is targeted towards the
test generation method and integrated into the
developer’s environment.

(O 2) (O 35) (O 34) (O 39)
(O 40) (O 30) (O 43) (O 31)
(O 24) (O 26) (O 27) (O 28)

Recommendation 2: When the main goal is
for developers to accept a test case into their
maintained test suite, it is more important that
the test case is understandable and relevant to
the developer, than how much it impacts the
coverage of the test suite.

(O 2) (O 3) (O 5) (O 7)
(O 12) (O 35) (O 14) (O 11)
(O 9) (O 10)

Table 3: Connection of our recommendations to our interview observations.

confident towards the end of the interviews about what TestCube can do
for them and how they could apply it effectively (O 30). In general, we saw
that amplification was easy to grasp for the developers (O 49). A participant
pointed out they would like to use such a tool while they are working on
improving the test suite (O 50, Support: 1) and another was eager to try it
on their own projects (O 51, Support: 1).

Confidence One participant said that using TestCube more often would
increase their confidence in their test suite (O 52, Support: 1). On the one
hand simply through the higher coverage after adding the generated test cases,
and on the other hand because they see more important scenarios being cov-
ered.

RQ4: The Value Developer-Centric Test
Amplification Brings to Developers

Our participants named a number of benefits they would gain from
using an automatic test amplification tool regularly. It would make
it easier for them to develop test cases, by alleviating them from the
effort to write the test cases and by providing inspiration of scenar-
ios they tend to forget to test. A developer-centric test amplification
approach would support them learning about automatic test amplifi-
cation and using it would increase their confidence in their test suite.

6 Discussion and Recommendations

In the following, we consolidate our results into two actionable recommenda-
tions on how to make amplified test cases and test exploration tools suited for
developer-centric test amplification. Table 3 shows from which of our interview
observations we infer the recommendations.

Developer-Centric Test Amplification 29

We chose an additional layer between the test amplification and the devel-
oper, a test exploration tool, to address the issues users previously reported
with DSpot. Our prototypes could already surface different kinds of informa-
tion the developers were seeking, such as the behavior of the test case (O 2),
its coverage (O 35), or which code is tested (O 34). Further, it became clear
how tightly the characteristics of the test exploration tool are bound to the
kind of test cases it presents to the developer. In our design, the technique
of test amplification (C 1) and the information from the amplification pro-
cess reports (C 9), is tightly bound to what our exploration tool TestCube
presents to its users about the test cases (C 14). Our participants were ques-
tioning how the test cases are generated, and also sought information especially
related to test amplification, like the original test case (O 39) (O 40). We
saw the importance of expectation management (O 30), e.g., on how much
they should edit the proposed test cases, and conveying the value the test
amplification can bring to the developer, such as pointing to untested code
paths (O 43). The tight integration into the developer’s IDE was helpful to
get them started quickly (O 19). Overall, we saw a positive effect of using a
test exploration tool to facilitate the developer-centric test amplification. We
conjecture that this support of an integrated test exploration tool is also bene-
ficial for other test generation approaches that aim to be developer-centric. We
recommend to future authors of developer-centric test generation approaches
to provide a test exploration tool that is targeted towards the test genera-
tion method they employ and accessible to the developer from their familiar
environment.

Recommendation 1
Consider the interaction of the developer with the test cases: provide a
test exploration tool that is targeted towards the test generation method
and integrated into the developer’s environment.

Concretely, TestCube can be improved in several points: Clearer visu-
alization of the connection from the amplified test case to the additionally
covered instructions in the code under test (O 23) (O 34) (O 38) and de-
scribing the behavior of the amplified test case and how it diverges from the
original test case (O 31). Further we can help developer focus by proposing
one test case at a time (O 24) (O 26) (O 27) and address waiting time
(O 28) by generating test cases before they are requested.

Looking at the results of our first research question, we can see that the de-
velopers were mainly concerned with understanding the test cases TestCube
presented to them (O 2). The observations which occurred in most interviews
are about the identifiers (O 3), the conciseness of the code (O 5) (O 7), and
trying to understand the behavior and intent of the test case (O 31), be it
through the test code itself or the various other kinds of information sought.
During our interviews, the understanding was always the first step—only after
the participants understood a test case they started to judge the impact or
relevance (O 12) (O 35). When judging the test cases, we observed that not

30 Carolin Brandt, Andy Zaidman

all tests which increase instruction coverage are relevant to developers, e.g.,
because they test a to them less important method (O 12) or a too narrow
behavior (O 14). From these results, we infer that for a developer-centric ap-
proach, where the central aim is for a developer to take over the generated test
case into their maintained test suite, the understandability of the generated
test case and the relevance to the developer is of a bigger concern than how
high its numeric impact is on the coverage of the test suite. An understandable
test case with a weaker coverage contribution is more likely to be accepted by
developers, compared to a test case that increases coverage greatly but they
discard because they can not understand what it does. We recommend to fu-
ture authors of developer-centric test generation approaches to prioritize the
understandability of the generated test cases and their relevance to the devel-
oper higher than their impact on the coverage of the test suite.

Recommendation 2
When the main goal is for developers to accept a test case into their main-
tained test suite, it is more important that the test case is understandable
and relevant to the developer, than how much it impacts the coverage of
the test suite.

Concretely, the amplified test cases generated by DSpot can be improved
by generating useful identifiers (O 3), possibly informing about the unique
coverage provided by the test case (O 35) (Nijkamp et al., 2021). Further
unnecessary statements (O 5) and casts (O 7) should be removed (Ooster-
broek et al., 2021), the style of the test cases (O 11) can be adapted to fit
the existing test suite, randomly generated strings shortened and focused to
the part triggering the tested behavior (O 10), and assertions adapted to use
the most specific assertion giving an informative error message (O 9).

Our participants pointed out how easy it was to interact with TestCube
right from their IDE (O 17) (O 19) (O 20), many found test cases that they
liked and added them into the test suite of our example project. We conjec-
ture that combining the already powerful state-of-the-art test amplification
approaches with well-designed, developer-centric test exploration tools will let
us reach more developers to amplify their software testing practice.

7 Threats to Validity

There are several threats to the validity of our results which we discuss in this
section.

Confirmability To ensure that our results are formed by the interviewees and
not by the authors, we base our results as closely as possible on the interviews.
While coding and analyzing the interviews we performed extra steps to validate
the codes elicited from the interviews and evaluated the inter-rater reliability,
as described in Section 4.3. Nevertheless, other researchers might structure the

Developer-Centric Test Amplification 31

resulting codes differently or draw varying conclusions from them. We publish
the full codes together with their frequency in our interviews (Brandt and
Zaidman, 2021) for others to further explore the research area and add to our
study.

Reactivity and Respondent Bias As the first author created the prototypes
and conducted all interviews, the statements of the participants might be
influenced by the participants wanting to please the creator of the tool they are
evaluating. To mitigate this threat, we repeatedly invited the participants to
be critical and refrained from defending the current state of the tool. Based on
the wide variety of critical and positive points we could collect, we conjecture
to have mitigated this threat.

Construct Validity A threat to the construct validity of our study is that our
participants interacted with an early prototype showing one possible design
of a test amplification tool. Bugs in the prototype or design decisions we took
could influence the developer’s experience and the generalizability of the re-
sults to general test amplification approaches. We identify several of our results
as being related to our choice of test amplification to generate the test cases
(C 1), which we indicated while reporting them in Section 5. Similarly, our ob-
servations can be influenced by our default configuration of DSpot. Optimizing
the configuration of DSpot to fit the target project would likely lead to more
relevant test methods being generated. Furthermore, our participants were not
developers of the example project we used in the study. We expect that de-
velopers familiar with a project would spend less time on understanding the
original and amplified test cases and could judge more easily if a production
method is relevant to be tested.

Dependability Whether our results are consistent and can be repeated in a
replication is the concern of dependability. With 16 participants we were able
to interview a relatively large number of software developers. Our presented
results mainly focus on observations that we made in multiple interviews (that
have high support). Nevertheless, there were many insightful comments that
only emerged from one or a few interviews. Through the openness of our setup
and questions, the interviews went in many different directions and the obser-
vations we could make are dependent on the taken direction. We expect that
repeating this study would yield different support for the rarely-mentioned
aspects, however the overall conclusions will likely stay the same.

External validity There are several threats to the generalizability of our re-
sults. As well as other state-of-the-art test generation tools, our prototypes
address Java and its specific properties. We expect our results to generalize
to other object-oriented, statically typed languages and are curious to see the
different information needs developers of other programming languages have.

The choice of presenting our prototypes together with the example project
Jsoup can also impact our results. Because equals, hashCode and clone were

32 Carolin Brandt, Andy Zaidman

not covered by the existing test suite, DSpot generated tests mainly for these
functions that were named “irrelevant” by several of our participants. In other
projects whose test suite has a lower or differently distributed coverage, the
aspect of testing relevant methods might be less apparent.

As we performed convenience sampling, the results of our study might
be influenced by our professional networks, as well as a self-selection bias of
developers that are especially interested in high-quality test suites. From the
demographic information we collected, we conclude that we sampled from a
broad variety of experiences, industry domains and team sizes.

8 Related Work

Various past works have focused on the two main parts of or approach, mainly
improving the understandability of test cases and integrating test generation
tools into development environments.

8.1 Understandability of Test Cases

The issues of cryptic identifiers and lack of documentation in generated test
cases are addressed by Roy et al. (Roy et al., 2020) in their tool DeepTC-
Enhancer. With a combination of templates and deep learning, they generate
comments that explain the behavior of a test case and meaningful identifiers.
Their work is an extension of TestDescriber by Panichella et al. (Panichella
et al., 2016) and was evaluated by 36 developers. The developers were most
enthusiastic about the meaningful identifiers, while some said the explanatory
comments are not concise enough. In our interviews, we also observed the
importance of expressive test names and variable identifiers. While our partic-
ipants were trying to understand the behavior of the amplified test cases, they
could interpret the raw code of the test cases well. Therefore, we do not be-
lieve any additional summarization of the test itself is necessary. Easier access
to the code under test and information about previous and added coverage
are more relevant concerns going forward. In similar vein, Li et al. describe
UnitTestScribe (Li et al., 2016).

Alsharif et al. (Alsharif et al., 2019) investigated which factors are impor-
tant for the understandability of automatically generated SQL schema tests.
They saw that human-readable string values are better to understand than ran-
domly generated ones and the repetition between generated test cases made it
easier to focus on the relevant differences of the test cases towards each other.
Their results align with ours: Randomly generated strings were mentioned as
confusing and our interview participants repeatedly used the similarity be-
tween the original and the amplified test case to understand the behavior and
impact of the newly generated test case.

Daka et al. (Daka et al., 2015) define a regression model for test case read-
ability based on various syntactic properties of test cases. They integrate the

Developer-Centric Test Amplification 33

model into the fitness function of EvoSuite (Fraser and Arcuri, 2011) to gen-
erate more readable test cases. In their model and post-experiment survey
they identified several important factors overlapping with our findings: Iden-
tifiers are important for the understandability of a test case, as well as no
unnecessarily defined variables and short string literals.

Next to DeepTC-Enhancer by Roy et al. (Roy et al., 2020), several further
works focus on generating meaningful names for test cases. NameAssist by
Zhang et al. (Zhang et al., 2016) infers test names from the class under test,
the expected outcome stated in the assertion and the overall test scenario
defined in the body of the test. Daka et al. (Daka et al., 2017) derive test
names from additionally covered exceptions, methods, outputs and inputs of
the component under test. They showed that the generated names are equally
excepted compared to names given by developers and made it easier for de-
velopers to match a test to the code under test. Including an advanced name
generation approach such as the one by Daka et al. (Daka et al., 2017) would
be a valuable addition to TestCube and DSpot.

Bihel and Baudry (Bihel and Baudry, 2018) focused specifically on mak-
ing tests amplified by DSpot more accessible for developers. They generate
a natural language description of the changes made during the amplification,
of the value observations which lead to new assertions, and of the mutants
which will be killed by the newly added test cases. These descriptions are
designed to accommodate a pull request proposing to add an amplified test
case. In comparison, TestCube focuses on a just-in-time interaction of the
developer, embedding test amplification into their IDE. In our scenarios, not
only tool performance, but also the amount of presented information is a dis-
tinguishing challenge. Compared to Bihel and Baudry’s approach (Bihel and
Baudry, 2018), TestCube more carefully selects the information presented
to the developer. We also evaluate our approach in a study with developers.

Because of the high computational cost of test generation, many tools have
opted for integration into the continuous integration process (Arcuri et al.,
2016; Danglot et al., 2020). This, however, leads to a long time distance be-
tween triggering the test generation and receiving results Beller et al. (2017),
as well as the developers having to inspect the tools outside of their famil-
iar development environment. To provide more immediate value and direct
feedback, we opted to let TestCube run on our user’s computers, leading to
many more constraints regarding the available execution power and therefore
possible complexity of the applied algorithms.

8.2 Test Generation Tools Integrated in the IDE

Several other test generation tools have been integrated into IDEs up until
now. Following an industrial study of EvoSuite, Rojas et al. (Rojas et al., 2015)
pointed out the importance to integrate test generation tools into development
environments. Since then, EvoSuite has been lightly integrated into IntelliJ
IDEA as a plugin (Arcuri et al., 2016) which provides options to configure the

34 Carolin Brandt, Andy Zaidman

test generation within an existing build process. In contrast to this, TestCube
runs independently from a project’s build process and can be installed and
applied with nearly no configuration10.

DSpot has been integrated into the Eclipse IDE as a plugin together with
other tools from the STAMP project (STAMP, 2019a). The plugin offers a
graphical interface to set the various configuration parameters of DSpot and
start the amplification process. Compared to TestCube , the additional in-
formation showing the impact of a generated test case is just presented as
a JSON text and the developer is still confronted with many configuration
parameters.

Tillmann and de Halleux (Tillmann and de Halleux, 2008) developed the
Pex tool which generates inputs for parameterized tests based on program
analysis. They integrated their tool into Visual Studio, enabling the developer
to generate and execute the unit tests by right-clicking on the parameterized
unit test. The tool presents the generated inputs and corresponding test results
in a new window as a simple table.

8.3 Interactive Test Generation

The idea of connecting the developer closer with the test generation is also
realized in Interactive Search-Based Software Testing (ISBST). In the con-
cept of Marculescu et al. (Marculescu et al., 2012), domain experts decide
the importance of different components in the fitness function leading the au-
tomatic optimization of the test cases. The interaction happens during the
search process, where in defined moments the expert evaluates the current
candidate test cases and adapts the fitness function for the next round of test
generation. When compared to manual testing, ISBST could find different test
cases and execute behavior previously not considered by developers, similar to
what our participants reported about TestCube (O 45). Marculescu et al.
also investigated the mental workload of developers using ISBST compared to
manually writing test cases. They did see a higher load and explain it through
the distance from the developer’s interaction with the fitness function to the
outcome of the search process. Similarly, we saw during our interviews that
the developers tried to retrace the generation of the test cases, strengthening
the choice to perform only small edits during the amplification to make the
process easier to retrace. After transferring their approach to industry (Mar-
culescu et al., 2018), Marculescu et al. point out the need for ISBST and other
automated test systems to effectively communicate their results to their users.
Our work addresses this by prototyping a developer-centric test exploration
tool and eliciting the key factors to make such tools suited to be used for test
amplification.

10 In the current version the user only has to provide the path to their Java 8 installation
and their Maven Home.

Developer-Centric Test Amplification 35

9 Conclusion

With this paper, we are setting a step towards test amplification that is cen-
tered around the developer and their needs. Based on reported issues with
current state-of-the-art tools, we devised design intentions for a developer-
centric test amplification approach that aims to generate test cases that will
be taken over into the manually maintained test suite. We used these inten-
tions to adapt DSpot‘s test amplification and create TestCube , a powerful
test exploration plugin for IntelliJ. With the help of these tools, we interviewed
16 software developers from a variety of backgrounds and collected detailed
insights on how the amplified test cases and the exploration tool should be
adapted to best fit their needs. Through evaluating the information sought
during the test exploration, as well as the value test amplification brings to
developers, we guide future tool developers on what they should bring forward
in their upcoming, developer-centric test generation tools. We summarized our
observations and results into two recommendations: Tool makers should con-
sider the interaction of the developers with the amplified test cases and provide
a targeted and integrated test exploration tool. If taking over the test cases
into the maintained test suite is the declared goal, the understandability of
the amplified test cases should be prioritized over optimizing the coverage of
the test suite.

In short, we contribute:
– two recommendations on how to design developer-centric test amplification

tools
– a structured overview of the key factors to make amplified tests as well as

test exploration tools suited for developer-centric test amplification
– a refined, developer-centric test amplification approach, based on the DSpot

test amplification
– a developer-oriented test exploration plugin for the IntelliJ IDE

Going forward we want to understand the different aspects of developer-
centric test amplification in more depth. We want to look into generating
meaningful identifiers fast enough, ranking test cases according to their rele-
vance to the developer, and providing them information such as runtime or
coverage when they look for it, but without overwhelming them. Our tools will
dive deeper into their day-to-day development, for example by helping them
incrementally generate test cases for new or untested classes. We want to give
them more power to direct the amplification and receive test cases that cover
code or scenarios they are interested in, while also providing them with subtle,
helpful recommendations before they realize they need another test case. Our
vision is to build tools and methods that empower developers to create better
test suites with less effort, while they are at the steering wheel deciding over,
leading, and benefiting from our automatic test amplification.

Acknowledgements We would like to thank the participants of our study for the valuable
feedback on our work. This work was sponsored by the Dutch science foundation NWO
through the Vici “TestShift” project (No. VI.C.182.032).

36 Carolin Brandt, Andy Zaidman

Declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

References

Almasi MM, Hemmati H, Fraser G, Arcuri A, Benefelds J (2017) An indus-
trial evaluation of unit test generation: Finding real faults in a financial
application. In: 39th IEEE/ACM International Conference on Software En-
gineering: Software Engineering in Practice Track, ICSE-SEIP 2017, Buenos
Aires, Argentina, May 20-28, 2017, IEEE Computer Society, pp 263–272

Alsharif A, Kapfhammer GM, McMinn P (2019) What factors make SQL test
cases understandable for testers? A human study of automated test data
generation techniques. In: 2019 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA, September
29 - October 4, 2019, IEEE, pp 437–448

Aniche MF, Treude C, Zaidman A (-) How developers engineer test cases: An
observational study. IEEE Transactions on Software Engineering

Arcuri A, Fraser G (2013) Parameter tuning or default values? An empir-
ical investigation in search-based software engineering. Empir Softw Eng
18(3):594–623

Arcuri A, Campos J, Fraser G (2016) Unit test generation during software de-
velopment: EvoSuite plugins for Maven, IntelliJ and Jenkins. In: 2016 IEEE
International Conference on Software Testing, Verification and Validation,
ICST 2016, Chicago, IL, USA, April 11-15, 2016, IEEE Computer Society,
pp 401–408

Athanasiou D, Nugroho A, Visser J, Zaidman A (2014) Test code quality
and its relation to issue handling performance. IEEE Trans Software Eng
40(11):1100–1125

Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the System
Usability Scale. Int J Hum Comput Interact 24(6):574–594

Beck KL (2003) Test-Driven Development - By Example. The Addison-Wesley
signature series, Addison-Wesley

Beller M, Gousios G, Panichella A, Zaidman A (2015a) When, how, and why
developers (do not) test in their IDEs. In: Nitto ED, Harman M, Heymans P
(eds) Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015, ACM, pp 179–190

Beller M, Gousios G, Zaidman A (2015b) How (much) do developers test? In:
Bertolino A, Canfora G, Elbaum SG (eds) 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 2, IEEE Computer Society, pp 559–562

Developer-Centric Test Amplification 37

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: an
explorative analysis of Travis CI with GitHub. In: Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), IEEE
Computer Society, pp 356–367

Beller M, Gousios G, Panichella A, Proksch S, Amann S, Zaidman A (2019)
Developer testing in the IDE: patterns, beliefs, and behavior. IEEE Trans
Software Eng 45(3):261–284

Bevan N (2001) International standards for HCI and usability. Int J Hum
Comput Stud 55(4):533–552

Bihel S, Baudry B (2018) Adapting amplified unit tests for human compre-
hension. KTH Internship Report

Brandt C, Zaidman A (2021) Developer-centric test amplification: The inter-
play between automatic generation and human exploration — appendix.
https://doi.org/10.5281/zenodo.5254870

Corbin JM, Strauss A (1990) Grounded theory research: Procedures, canons,
and evaluative criteria. Qualitative sociology 13(1):3–21

Daka E, Campos J, Fraser G, Dorn J, Weimer W (2015) Modeling readability
to improve unit tests. In: Nitto ED, Harman M, Heymans P (eds) Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, ACM, pp
107–118

Daka E, Rojas JM, Fraser G (2017) Generating unit tests with descriptive
names or: Would you name your children thing1 and thing2? In: Bultan T,
Sen K (eds) Proceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, Santa Barbara, CA, USA, July 10
- 14, 2017, ACM, pp 57–67

Danglot B, Vera-Perez O, Yu Z, Zaidman A, Monperrus M, Baudry B (2019a)
A snowballing literature study on test amplification. Journal of Systems and
Software 157:110398

Danglot B, Vera-Pérez OL, Baudry B, Monperrus M (2019b) Automatic test
improvement with DSpot: A study with ten mature open-source projects.
Empirical Software Engineering 24(4):2603–2635

Danglot B, Monperrus M, Rudametkin W, Baudry B (2020) An approach and
benchmark to detect behavioral changes of commits in continuous integra-
tion. Empir Softw Eng 25(4):2379–2415

Derakhshanfar P, Devroey X, Panichella A, Zaidman A, van Deursen A
(2020a) Botsing, a search-based crash reproduction framework for java. In:
35th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2020, Melbourne, Australia, September 21-25, 2020, IEEE, pp
1278–1282

Derakhshanfar P, Devroey X, Zaidman A, van Deursen A, Panichella A
(2020b) Good things come in threes: Improving search-based crash repro-
duction with helper objectives. In: 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020, IEEE, pp 211–223

https://doi.org/10.5281/zenodo.5254870

38 Carolin Brandt, Andy Zaidman

Fraser G, Arcuri A (2011) EvoSuite: Automatic test suite generation for
object-oriented software. In: Gyimóthy T, Zeller A (eds) SIGSOFT/FSE’11
19th ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE-19) and ESEC’11: 13th European Software Engineering Confer-
ence (ESEC-13), Szeged, Hungary, September 5-9, 2011, ACM, pp 416–419

Fraser G, Arcuri A (2013) EvoSuite: On the challenges of test case genera-
tion in the real world. In: Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,
March 18-22, 2013, IEEE Computer Society, pp 362–369

Fraser G, Staats M, McMinn P, Arcuri A, Padberg F (2015) Does automated
unit test generation really help software testers? A controlled empirical
study. ACM Trans Softw Eng Methodol 24(4):23:1–23:49

Grano G, Scalabrino S, Gall HC, Oliveto R (2018) An empirical investiga-
tion on the readability of manual and generated test cases. In: Khomh F,
Roy CK, Siegmund J (eds) Proceedings of the 26th Conference on Program
Comprehension, ICPC 2018, Gothenburg, Sweden, May 27-28, 2018, ACM,
pp 348–351

Grano G, Iaco CD, Palomba F, Gall HC (2020) Pizza versus pinsa: On the
perception and measurability of unit test code quality. In: IEEE Interna-
tional Conference on Software Maintenance and Evolution, ICSME 2020,
Adelaide, Australia, September 28 - October 2, 2020, IEEE, pp 336–347

Haq FU, Shin D, Briand LC, Stifter T, Wang J (2021) Automatic test suite
generation for key-points detection dnns using many-objective search (ex-
perience paper). ACM, ISSTA 2021

Hoffman D, Strooper P (2003) API documentation with executable examples.
Journal of Systems and Software 66(2):143–156

Infinitest (2021) Infinitest - the continuous test runner for the JVM.
https://infinitest.github.io/

Kochhar PS, Xia X, Lo D (2019) Practitioners’ views on good software testing
practices. In: Sharp H, Whalen M (eds) Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice, ICSE
(SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, IEEE / ACM, pp
61–70

Li B, Vendome C, Vásquez ML, Poshyvanyk D, Kraft NA (2016) Automati-
cally documenting unit test cases. In: 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), IEEE Computer
Society, pp 341–352

Liu X, Holmes R (2020) Exploring developer preferences for visualizing exter-
nal information within source code editors. In: 2020 Working Conference on
Software Visualization (VISSOFT), IEEE, pp 27–37

Marculescu B, Feldt R, Torkar R (2012) A concept for an interactive search-
based software testing system. In: Fraser G, de Souza JT (eds) Search Based
Software Engineering - 4th International Symposium, SSBSE 2012, Riva del
Garda, Italy, September 28-30, 2012. Proceedings, Springer, Lecture Notes
in Computer Science, vol 7515, pp 273–278

Developer-Centric Test Amplification 39

Marculescu B, Feldt R, Torkar R, Poulding SM (2018) Transferring interactive
search-based software testing to industry. J Syst Softw 142:156–170

Meszaros G (2007) XUnit Test Patterns: Refactoring Test Code. Pearson Ed-
ucation

Nassif M, Hernandez A, Sridharan A, Robillard MP (2021) Generating unit
tests for documentation. IEEE Transactions on Software Engineering

Nijkamp N, Brandt C, Zaidman A (2021) Naming amplified tests based on
improved coverage. In: 2021 IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM)

Oosterbroek W, Brandt C, Zaidman A (2021) Removing redundant statements
in amplified test cases. In: 2021 IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM)

Palomba F, Panichella A, Zaidman A, Oliveto R, De Lucia A (2016) Au-
tomatic test case generation: What if test code quality matters? In: Zeller
A, Roychoudhury A (eds) Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July
18-20, 2016, ACM, pp 130–141

Panichella S, Panichella A, Beller M, Zaidman A, Gall HC (2016) The impact
of test case summaries on bug fixing performance: An empirical investiga-
tion. In: Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, ACM, pp 547–558

Prado MP, Vincenzi AMR (2018) Towards cognitive support for unit testing:
A qualitative study with practitioners. J Syst Softw 141:66–84

Robinson B, Ernst MD, Perkins JH, Augustine V, Li N (2011) Scaling up
automated test generation: Automatically generating maintainable regres-
sion unit tests for programs. In: Proceedings of the 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), IEEE
Computer Society, pp 23—32

Rojas JM, Fraser G, Arcuri A (2015) Automated unit test generation during
software development: A controlled experiment and think-aloud observa-
tions. In: Young M, Xie T (eds) Proceedings of the 2015 International Sym-
posium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015, ACM, pp 338–349

Roy D, Zhang Z, Ma M, Arnaoudova V, Panichella A, Panichella S, Gon-
zalez D, Mirakhorli M (2020) DeepTC-Enhancer: Improving the readability
of automatically generated tests. In: 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020, IEEE, pp 287–298

Serra D, Grano G, Palomba F, Ferrucci F, Gall HC, Bacchelli A (2019) On
the effectiveness of manual and automatic unit test generation: Ten years
later. In: Storey MD, Adams B, Haiduc S (eds) Proceedings of the 16th
International Conference on Mining Software Repositories, MSR 2019, 26-
27 May 2019, Montreal, Canada, IEEE / ACM, pp 121–125

Spadini D, Aniche MF, Storey MD, Bruntink M, Bacchelli A (2018) When
testing meets code review: Why and how developers review tests. In: Chau-

40 Carolin Brandt, Andy Zaidman

dron M, Crnkovic I, Chechik M, Harman M (eds) Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, ACM, pp 677–687

STAMP (2019a) STAMP project: Eclipse IDE. https://github.com/STAMP-
project/stamp-ide

STAMP (2019b) Use cases validation report v3. https://github.com/STAMP-
project/docs-forum/blob/master/docs/

Tillmann N, de Halleux J (2008) Pex-white box test generation for .NET. In:
Beckert B, Hähnle R (eds) Tests and Proofs - 2nd International Conference,
TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings, Springer, Lecture
Notes in Computer Science, vol 4966, pp 134–153

Whittaker JA, Arbon J, Carollo J (2012) How Google Tests Software. Addison-
Wesley

Zhang B, Hill E, Clause J (2016) Towards automatically generating descrip-
tive names for unit tests. In: Lo D, Apel S, Khurshid S (eds) Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, ACM, pp 625–636

Zhang Y, Wildemuth BM (2009) Unstructured interviews. Applications of
social research methods to questions in information and library science pp
222–231

	Introduction
	Creating Developer-Centric Test Amplification
	Bringing Test Amplification to the Developer (IDE)
	Study Design
	Results
	Discussion and Recommendations
	Threats to Validity
	Related Work
	Conclusion

