
Mind the Gap: What Working With Developers on Fuzz Tests
Taught Us About Coverage Gaps

Carolin Brandt
c.e.brandt@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Marco Castelluccio
mcastelluccio@mozilla.com

Mozilla Corporation
London, UK

Christian Holler
choller@mozilla.com
Mozilla Corporation
Bonn, Germany

Jason Kratzer
jkratzer@mozilla.com
Mozilla Corporation
Asheville, NC USA

Andy Zaidman
a.e.zaidman@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Alberto Bacchelli
bacchelli@ifi.uzh.ch
University of Zurich
Zurich, Switzerland

ABSTRACT
Can fuzzers generate partial tests that developers find useful enough
to complete into functional tests (e.g., by adding assertions)? To
address this question, we develop a prototype within the Mozilla
ecosystem and open 13 bug reports proposing partial generated
tests for currently uncovered code. We found that the majority
of the reactions focus on whether the targeted coverage gap is
actually worth testing. To investigate further which coverage gaps
developers find relevant to close, we design an automated filter
to exclude irrelevant coverage gaps before generating tests. From
conversations with 13 developers about whether the remaining
coverage gaps are worth closing when a partially generated test is
available, we learn that the filtering indeed removes clearly non-
test-worthy gaps. The developers propose a variety of additional
strategies to address the coverage gaps and how to make fuzz tests
and reports more useful for developers.

ACM Reference Format:
Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy
Zaidman, and Alberto Bacchelli. 2024. Mind the Gap: What Working With
Developers on Fuzz Tests Taught Us About Coverage Gaps . In 46th Interna-
tional Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3639477.3639721

1 INTRODUCTION
While the importance of automated tests is widely accepted [3, 7],
creating them is a tedious task for developers [4–6]. Automatic
test generation aims to alleviate the developer’s effort when writ-
ing tests. State-of-the-art tools can reach high structural cover-
age [9, 16, 19, 28, 29], but face obstacles like understandability of
the tests [10, 17, 25], and integration of the tools into the compa-
nies tooling [1, 11]. In contrast, automated testing tools from the
security community, namely fuzzers, are successfully applied in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0501-4/24/04.
https://doi.org/10.1145/3639477.3639721

practice1 [2, 20]. Fuzzers explore possible inputs to a program to
find crashes and potential security vulnerabilities [8, 32]. At Mozilla,
fuzzers find around 25 % of all critical or high rated security vulner-
abilities, year after year (see Figure 2). In this experience report, we
document our exploration on whether fuzzers can generate partial
tests that developers find useful to complete into functional tests.

One of the sources of effort when writing tests is to create the
fixture—the setup and operations needed to reach the targeted code
to be tested [12]. This is where fuzzers can help: When they find a
crash, they return the fixture and inputs triggering the crash. To
turn the fixture into a complete functional test, a developer would
then add an assertion that checks the behavior of the code under
test. Let us illustrate this with an example:

To improve their test suite, Ezra’s software company
introduced a tool that proposes partial fuzzing-generated
tests to developers. From the tool, Ezra receives an
issue report including a fuzzing-generated fixture that
reaches a line of code that is not yet covered by their
test suite. She inspects the targeted code and the pro-
vided fixture to judge whether the fixture is useful
enough for her to complete it into a functional test.
To complete it, Ezra adds an assertion that checks
the behavior of the targeted code, surrounds it with
their test framework’s template, and then includes it
in their test suite.

To explore the potential of such a tool, we conduct a study with
two main phases. First, we build a prototype based on Mozilla’s
fuzzing infrastructure. Using this, we submit issue reports with
partial tests that draw from the output of fuzzers. We analyze the
responses to the reports to answer our first research question:

RQ1: What are developers’ reactions when proposing fuzzing-
based tests to be completed into functional tests?

Our goal is to determine whether developers see enough value in
these tests to develop them into functional tests, such as by adding
assertions. To enhance the significance of these partial tests, we
tailor them to target code sections not covered by current tests.
Based on developer feedback, we observe that they first assess the

1https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/

https://orcid.org/0000-0001-7623-1970
https://orcid.org/0000-0002-3285-5121
https://orcid.org/0009-0004-2282-6847
https://orcid.org/0009-0008-8086-0372
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-0193-6823
https://doi.org/10.1145/3639477.3639721
https://doi.org/10.1145/3639477.3639721

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and Alberto Bacchelli

* FunctionalTest

Functional
1 execute ↳

*

& &- -Test Suite
- Continuous

- Test uutested # Reducer
4

#

Integration Coverage blocks
Minimized g

SourceCode & FuzzTests Fuzz Tests
* ↳

- S I
Instrumentation ↑ 3 Auxiliam·

> 2
block not tested? *

&
Failure ↳ Report - Report

&C Instrumented? Fuzzer - * Information
-

-

Generator
↳ failing assertion Code

Figure 1: Overview of our fuzzing inspiration approach.

significance or “relevance” of the specific code under test before
evaluating the value of the partial tests themselves.

Drawing from these insights, in the study’s second phase, we
design a filter to pinpoint coverage gaps more relevant to the de-
velopers. We then engage with developers to gauge their interest
in addressing these gaps, addressing our second research question:

RQ2: What are developers’ opinions about closing the coverage
gaps remaining after our filter?

Our study reveals developers’ criteria for determining the sig-
nificance of closing a coverage gap and their preferred methods,
including completing our partial fuzzing-based tests.

334

291

221
185

160
127

101
69

44 54

0

50

100

150

200

250

300

350

400

2018 2019 2020 2021 2022

Critical and High-rated Security Vulnerabilities Resolved at Mozilla

total reported by fuzzing

Figure 2: Number of resolved critical and high-rated security
vulnerabilities over the years at Mozilla. See Appendix A for
how we obtained these numbers.

2 FUZZING TO INSPIRE FUNCTIONAL TESTS
In this section, we explain our approach to generate partial, fuzzing-
based tests and to create reports for developers to complete them
to functional tests. We start by describing our general design, and
then explain how we concretely implement it for Mozilla.

2.1 Inspiration Through Fuzzing-based Tests
The test generation consists of five steps, which we illustrate in
Figure 1.

First, we obtain the line coverage of the current regression test
suite, e.g., from the continuous integration artifacts 1○. We then

instrument all code blocks which are not executed by the test suite,
i.e., they are not yet covered by the tests 2○. We instrument these
blocks with an assertion that will trigger the fuzzer: When a fuzz
test executes one of our inserted assertions, the fuzzer will regis-
ter a crash and save the fuzz test. In the third step 3○, we use a
generative fuzzer to collect tests that execute the instrumented, not-
yet-tested code blocks. During the fuzzing, we also collect auxiliary
information such as which instrumented code block is executed
and the stack trace when the fuzzer hit the assertion. Next 4○, we
minimize the fuzz tests to only those lines necessary to trigger the
instrumented assertion. When there are multiple minimal tests, we
keep them all to provide alternative tests to the developer.

After obtaining the minimal fuzz tests, we use them and the
auxiliary information to create a bug report for developers 5○. We
explain that we have a partial test and link to the untested code
block it executes. We provide the test with the smallest character
count, and attach the stack trace to help the developer understand
how the fuzz test executes the code block. We also attach the other
minimized tests as alternative inspirations for the developer. The
bug report asks the developer to complete the test by adding a func-
tional check, in xUnit terms: an assertion. If they think it is worth to
do so, the developer should add the test to the regression test suite.
For this, they also need to write the boilerplate code necessary to
integrate the test into the test suite. Figure 3 shows an example test
from the Firefox source code, highlighting the functional assertions
and the boilerplate code that embeds the test into the test suite. The
fuzzing-based tests don’t contain the boilerplate code yet, because
the fuzzer uses a different harness to execute the tests, and there
are multiple possible test suites with their own frameworks that
the developer might choose to add the test to.

2.2 Instantiation in the Mozilla Ecosystem
We implemented our approach for the development environment
of the Mozilla Firefox browser. Several regression test suites are
based on .html files that are executed in a sandboxed browser
environment [18]. Figure 3 shows an example test that checks that
the browser automatically scrolls to the right anchor on a page. The
functional check happens in the is(...) call, where two values
are compared and if they are not the same, the test fails with the
provided error message. To generate partial tests matching these

Mind the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

browser tests, we use the Domato fuzzer.2 Domato is a state-of-the-
art generative DOM fuzzer, that uses grammars to generate random
HTML, JavaScript, and CSS code in one .html file [31, 34]. We
use Mozilla’s grizzly3 harness to run Domato’s generated tests in
Firefox and record crashes and auxiliary information. We employ
delta-debugging [33] implemented in the tool lithium4 to reduce
the fuzz tests to the minimum lines needed to trigger the crash—to
execute the instrumented, not-yet-tested code block. For the exact
configurations, please refer to our replication package.5 Figure 4
shows one example of a reduced fuzz test generated during our
case study. The reports we generate are for Mozilla’s issue tracker
Bugzilla and use their code search engine Searchfox to link to the
targeted code block. As an example, Figure 5 shows an one of the
reports we generated during our study.

https://searchfox.org/mozilla-central/source/layout/generic/test/test_bug1566783.html
<!doctype html>
<title>Test for scroll anchoring adjustments during onload</title>
<script src="/tests/SimpleTest/SimpleTest.js"></script>
<script>

SimpleTest.waitForExplicitFinish();
</script>
<link rel="stylesheet" href="/tests/SimpleTest/test.css"/>
<iframe width="300" height="300“ src="file_bug1566783.html#slow"></iframe>

https://searchfox.org/mozilla-central/source/layout/generic/test/file_bug1566783.html
<!doctype html> <style> .spacer { height: 200vh; } </style>
<script>

function loadFailed() {
parent.ok(false , "Image load should not fail");

}
</script>
<div class="spacer"></div>

<div class="spacer"></div>

<div class="spacer"></div>
<script>
onload = function () {

setTimeout(function() {
let rect = document.getElementById("slow").getBoundingClientRect();
parent.is(rect.height , 1000, "#slow should take space");
parent.is(rect.top, 0, "#slow should be at the top of the viewport");
parent.SimpleTest.finish();

}, 0);
} </script>

Test Framework
Boilerplate

Functional Assertions

Figure 3: A test from the Firefox regression test suite.

<script >

window.requestIdleCallback(window.close , {timeout: 10000})

</script >

<style>

html:last -of-type , #htmlvar00001 {

text -align -last: start; }

.class0 , aside:nth -last -child (2) {

column -width: 1em;

</style>

<table>

<colgroup width="3" span="20">+GEE>uo/c(wt6 ,N:1=*</colgroup >

<caption class="class0">

Figure 4: A partial fuzzing-based test produced in our study.
To complete it, a functional assertion and test framework
boilerplate code needs to be added.

2https://github.com/googleprojectzero/domato
3https://github.com/MozillaSecurity/grizzly
4https://github.com/MozillaSecurity/lithium
5You can browse our replication package at: https://anonymous.4open.science/r/moz-
fuzz-inspiration-replication/readme.md or download it at https://zenodo.org/doi/10.
5281/zenodo.10470823.

3 PROPOSING INSPIRATIONAL
FUZZING-BASED TESTS TO DEVELOPERS

To investigate the feasibility of our approach for proposing partial,
fuzzing-based tests for completion to developers, we conduct a
prototype study [21] at Mozilla. Our goal is to explore whether our
approach can provide tests that are helpful to software developers,
andwhat aspects require further attention to create tests and reports
that the developers find useful. In the study, we generate tests for
uncovered code in the Firefox code base and submit 13 Bugzilla
reports proposing them to developers. We analyze the ensuing
discussions on the reports to identify why the developers choose to
act on the report or not, and how they resolve them. We conducted
a risk analysis and sought approval from our local ethics review
boards with respect to data protection.

3.1 Study Design and Execution
For our study, we choose two folders in the Firefox code base to
instrument and generate tests for. The folder /dom contains the
code pertaining to the implementation of the Document Object
Model6 (DOM) and its APIs. The folder /layout contains the layout
engine, responsible for laying out the elements of the page in the
correct positions.7 In initial trials, we saw that when inspecting
the fuzzing-based tests generated for these folders, we could draw
clear connections between the objects and attributes in the test
generated by the DOM fuzzer and the code targeted by the tests.
For this pragmatic reason, we opted to focus on these two folders.

After instrumenting the code,8 we let our fuzzer run on a desk-
top machine for 30minutes. This yielded us 133 fuzz tests and
corresponding reports. Of these, 36 were duplicates targeting the
same coverage gap. To not overwhelm the particular contributors
or groups, we decided to only open one Bugzilla report per Fire-
fox component. Components are categories of functionality that
Mozilla uses to manage responsible reviewers and triagers within
Bugzilla. Each code file belongs to one component, and we iden-
tified the corresponding component by looking at the file which
contains the coverage gap targeted by a generated test. We submit-
ted 13 Bugzilla reports, one for each of the components present in
our set of generated tests. In Figure 5 you can see an example of
such a report. We provide the shortest test generated by the fuzzer
for the targeted coverage gap and the stacktrace showing how the
test reaches the coverage gap. In addition, we included alternative
tests that the fuzzer produced for the same coverage gap, to provide
more options in case the shortest test was not useful.

Over the following week, we responded to any comments and
questions by the developers. Because we categorized our reports
as enhancements, many were initially not picked up through the
triage processes focusing on reports labeled as defects. After identi-
fying relevant developers based on the authors or reviewers of the
patches that created the code under test, we pinged them personally
and then received reactions to four more of the reports (1817159,
1817173, 1817235, 1817219).

6https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/
Introduction
7https://wiki.mozilla.org/Platform/Layout#About
8Revision: 63a3d733b2331033f48d10995ce09abf50def953 in mozilla-unified

https://anonymous.4open.science/r/moz-fuzz-inspiration-replication/readme.md
https://anonymous.4open.science/r/moz-fuzz-inspiration-replication/readme.md
https://zenodo.org/doi/10.5281/zenodo.10470823
https://zenodo.org/doi/10.5281/zenodo.10470823
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://wiki.mozilla.org/Platform/Layout#About

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and Alberto Bacchelli

Figure 5: A Bugzilla report submitted during our study.

Bug ID Component Resolution
1816640 SVG Open
1816862 DOM: Serializers No Reaction
1817150 CSS Parsing and Computation No Reaction
1817154 DOM: Core & HTML No Reaction
1817158 Layout No Reaction
1817159 XSLT Open
1817215 MathML Open
1817221 Audio/Video No Reaction
1817238 Layout: Tables No Reaction
1817173 Web Painting Open
1817176 DOM: Networking Resolved
1817235 Layout: Block and Inline Resolved
1817219 Layout: Images, Video, and HTML

Frames
Resolved

Table 1: List of all Bugzilla reports we submitted, in-
cluding the targeted component and the resolution
state of the report. The reports can be accessed via
https://bugzilla.mozilla.org/show_bug.cgi?id=<id> and
are hyperlinked in the ID column.

3.2 Developer Reactions
In this section, we give an overview of the reactions to the reports
we submitted. Table 1 lists each report, the component it is related
to, and a link to the full discussion. Out of the 13 reports, six received
no reaction, three were resolved, and four received comments but
remain open.

From the reports that received reactions, most prominently the
developers focused on whether the targeted code is worth test-
ing. The developer reacting to report 1816640 stated that: “All
[method under test] does is forward to setAttribute(’type’, value).
I’m not sure that there’s much value in testing it as it’s only one line
of code.” Two developers reacted to report 1817159. One pointed out
that the code for this feature is “rather derelict”, but then pointed
to a recent zero-day bug related to this code, stating that “maybe it
would be good to invest a bit of time ensuring that we have good
testing”. A second developer later explained that, together with
a colleague, they determined that the targeted code is suitable to
write tests. However, they also point out that these tests “wouldn’t
teach or touch deeper xslt logic”, which has the team’s priority at
that moment. We interpreted “teach” in the vein of tests serving
as documentation on how to use the code under test [3, 14, 22].
Even though tests for the targeted code would “improve exception
catching in tests without doubts”, they decide to leave this in their
backlog. The developer reacting to report 1817219 explained that
each of the tests are expected to trigger the early return in the
targeted coverage gap. They stated that it would not be worth to
test that code, also because they recently changed the surrounding
behavior.

When the reports lead to action from the developers beyond
comments, we observed a variety of ways to address the reports.
Report 1817176 received a quick reaction with a patch submitted to
code review. The patch did contain a test for the targeted coverage
gap, inspired by the test we submitted, but in a different format

https://bugzilla.mozilla.org/show_bug.cgi?id=1816640
https://bugzilla.mozilla.org/show_bug.cgi?id=1816862
https://bugzilla.mozilla.org/show_bug.cgi?id=1817150
https://bugzilla.mozilla.org/show_bug.cgi?id=1817154
https://bugzilla.mozilla.org/show_bug.cgi?id=1817158
https://bugzilla.mozilla.org/show_bug.cgi?id=1817159
https://bugzilla.mozilla.org/show_bug.cgi?id=1817215
https://bugzilla.mozilla.org/show_bug.cgi?id=1817221
https://bugzilla.mozilla.org/show_bug.cgi?id=1817238
https://bugzilla.mozilla.org/show_bug.cgi?id=1817173
https://bugzilla.mozilla.org/show_bug.cgi?id=1817176
https://bugzilla.mozilla.org/show_bug.cgi?id=1817235
https://bugzilla.mozilla.org/show_bug.cgi?id=1817219

Mind the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

than our proposed one: instead of a .html file, it was an addition
to a .json file that configures parameterized tests. The first de-
veloper reacting to report 1817235 stated that it “looks potentially
interesting,” explaining the behavior triggered by the test. They
propose to clean up the provided test cases, making sure that the
behavior of the code actually makes sense. A different developer
picked up the task and submitted a patch for the targeted line of
code. However, when the developer worked on the report, our tests
did not trigger a printf statement they added in the while loop
they targeted to test. The developer speculated that this could have
been caused by changes to the code under test between the moment
of fuzzing, opening the bug report and addressing the bug report.
So they crafted a test case themselves, inspired by hints from our
provided tests on which attributes are involved in triggering the
code under test. Report 1817219 was resolved by submitting and
merging a patch that removed the whole method targeted by our
fuzz test. One developer linked our report 1817215 to another active
report about updating tests for this component after changes in the
cross-browser web-platform-tests.

We received a very detailed reaction to report 1817173, analyz-
ing the behavior triggered by the generated tests. The targeted
coverage gap was a fallback path that is no longer used because a
newer component has taken over its responsibility on the operating
systems used for the CI coverage data. The developer pointed to
the line of test code that the newer component could not handle
and which triggered the fallback path. They initially propose two
solutions to resolve the bug: (1) adding a test suite variant that runs
all existing tests while enforcing the fallback path, or (2) duplicat-
ing some related tests and modifying them to use the fallback path.
In the ensuing discussion, we uncovered that the former option
already exists, but this test suite covering the targeted code is
not executed in the current CI coverage calculation.

Answer to RQ1: What are developers’ reactions when
proposing fuzzing-based tests to be completed into func-
tional tests?: The developers reflected on whether the code
targeted by the tests is worth covering, mentioning a too small
coverage gap or early returns as reasons to not act upon the
reports. Another reason was that the code was covered by tests
not executed on the CI. Other reports were addressed in a variety
of ways: submitting a syntactically different test for the same
scenario, using our test as a starting point to write their own
test, or removing the targeted code as it was no longer used.

4 SELECTING RELEVANT COVERAGE GAPS
In the developer’s reactions to our Bugzilla reports, we observed
that several of the coverage gaps we targeted with the fuzzing-based
tests were considered less relevant to test by the developers (Bug
1816640, Bug 1817159, Bug 1817219). This led to the developers not
further acting upon our generated tests. To provide more relevant
reports and partial tests, we decided to take a deeper look at which
coverage gaps we should target with our tests.

For this, we designed an automatic filtering step that excludes
less interesting coverage gaps (between 1○ and 2○ in Figure 1)
before instrumenting the code in preparation for the fuzzer. The

pseudo-code for the automatic filter is shown in Figure 6. The filter
excludes both:

• coverage gaps that are only a single line of code long, as the
comments on the bug reports deemed such gaps as too small
to close (Bug 1816640), and

• coverage on conditions and branches that represent an early
return out of a function (Bug 1817159, Bug 1817219).

What we call an early return is when a function returns a default
value after checking for an error or warning. We detect such early
returns by keywords, such as NS_ERROR or Throw, combined with
a return in the coverage gap. We manually inspected further cov-
erage gaps that were hit early, i.e., in two 2 minute runs, by our
fuzzing approach, and extended the keyword list to detect coverage
gaps that were deemed as early returns by our Mozilla collaborators.
When running our filter over the coverage gaps in the folders we
instrumented before (/dom and /layout), we exclude 15 054 (single
line) and 8085 (early return) coverage gaps, leading to a remainder
of 8644 coverage gaps to instrument.

def should_we_instrument_this_line ():

if (len(coverage_gap.lines) == 1)

or (len(coverage_gap.lines) == 2

and second_line_contains_only_closing_brace)

or is_early_return ():

return False # don't instrument

def is_early_return ():

is_error_or_warning , is_return = False

if "NS_WARN_IF" in condition_before_coverage_gap:

is_error_or_warning = True

for line in coverage_gap.lines:

if ("NS_WARNING" in line

or "NS_ERROR" in line

or "Throw" in line

or "WEBM_DEBUG" in line

or "Error" in line

or ("promise" in line and "reject" in line))):

is_error_or_warning = True

if "return" in line:

is_return = True

return is_error_or_warning and is_return

Figure 6: Our filter for interesting coverage gaps.

5 DO DEVELOPERS THINK THESE COVERAGE
GAPS SHOULD BE TESTED?

To evaluate whether our filtering for coverage gaps indeed yields
more interesting test targets, we again reach out to the developers
for feedback. We retrieve a new, more recent revision and CI cov-
erage run of the Firefox code base9 and apply our filter to select
relevant coverage gaps. To extend our reach of potential developers
to talk to, we extended the folders of the source code we imple-
mented to include /accessible, /editor, and /gfx in addition to
/dom and /layout. Applying the filter left us with 19 050 coverage
gaps to instrument, after excluding 30 672 (single line) and 13 626
(early return) coverage gaps. We instrumented the remaining cover-
age gaps and again generate fuzz tests for 30minutes on a desktop
computer. This yielded us a set of 44 coverage gaps that pass our
relevance filter and could be hit by the fuzzer within the short time
9Revision: 0bcf2642f5a6e7175812623451eda2ab6cb35a0d in mozilla-unified

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and Alberto Bacchelli

budget of 30minutes. We manually validated if each coverage gap
is still present and whether it should have been filtered: We exclude
five false positives (three early return statements, two single state-
ment coverages formatted to span two lines) and one coverage gap
inside code that is only executed during fuzzing runs.

We identified developers that can likely judge the test-worthiness
of the coverage gaps by looking at the authors and reviewers of the
patch that introduced the targeted line of code or recent patches
the surrounding lines. Patches that did not show experience with
the code at hand, e.g., large scale refactorings, and contributors no
longer with Mozilla, were excluded by us. The second author, who
is the manager of the CI and Quality Tools team, which owns the
coverage infrastructure and other development tools, contacted 13
developers. We briefly explained our project and that we are now
trying to identify areas of code that are interesting to cover with
a test. We then gave them one or more code locations and asked
whether they can explain why or why not they are valuable to test.
Additionally, we sought their consent for using their comments in
this paper.

Two authors analyzed the chat conversations by independently
applying open and axial coding. Then, they compared and merged
the emerging themes from their independent analyses. In the follow-
ing, we will describe our observations along three major categories:
First, we take a look at the developers’ rationales for why a coverage
gap is worth testing or not, motivating the need for a more refined
way of looking at code coverage and the need to close coverage
gaps. Then, we present varied proposals from the developers on
how to address the coverage gaps in other ways than completing
the fuzz test to a functional one. Finally, we consider our proposed
approach of submitting bug reports with fuzz tests to be completed
to functional tests and discuss feedback from the developers on
how to modify the tests, report, and workflow to better fit their
needs. Table 2 lists the coverage gaps we discussed with each of the
13 developers, identified in the following by D1–D13. For example,
with D4 one of the four coverage gaps we discussed were lines
90–105 of dom/svg/SVGMotionSMILAnimationFunction.cpp.

5.1 Test Relevance of the Filtered Coverage
Gaps

Our deeper look at filtering for interesting coverage gaps was moti-
vated by the feedback on our initial Bugzilla reports pointing out
coverage gaps too small to be worth closing (1816640), and fall-
back options that return early from a method in case of an error
(1817173). Looking at the conversations, the filtering seems to be
effective as we did not receive answers along the lines of “this is
too simple code to be worthy a test.” D1 reflects on a very particular
reason why the code is not tested at the moment. They explain that
“our tests only test the successful part”, which is a potential sign
of confirmation bias [13]. Furthermore, D1 states that the specific
failure handled by the targeted code is caused by operating systems
and hardware not available on the current CI servers.

In the conversations, the developers gave reasons why some
coverage gaps should be closed: to catch regressions (D11), in-
crease the confidence during rewrites and larger-scale refactorings
(D3, D8), documenting edge case bugs (D3), testing important edge
cases (D10, Figure 7), or ensuring that the behavior matches an

D1 dom/media/platforms/PDMFactory.cpp#678-680
dom/media/platforms/PDMFactory.cpp#725-727

D2 dom/svg/SVGFEImageElement.cpp#191-196
D3 dom/events/ContentEventHandler.cpp#1752-1755
D4 dom/svg/SVGMotionSMILAnimationFunction.cpp#90-105

layout/painting/nsCSSRendering.cpp#4112-4113
dom/svg/DOMSVGLength.cpp#297-298
layout/base/PresShell.cpp#9665-9667

D5 layout/painting/nsCSSRendering.cpp#2418-2425
layout/generic/nsBlockFrame.cpp#1133-1142
dom/html/HTMLSharedElement.cpp#96-102
layout/style/GeckoBindings.cpp#1397-1401
dom/svg/SVGStyleElement.cpp#164-167
layout/base/PresShell.cpp#9665-9667

D6 layout/painting/nsCSSRendering.cpp#4112-4113
layout/svg/SVGTextFrame.cpp#3922-3926
gfx/thebes/gfxFont.cpp#1530-1533
layout/svg/SVGTextFrame.cpp#2881-2883

D7 editor/libeditor/EditorBase.cpp#2888-2890
D8 dom/svg/SVGFETileElement.cpp#51-55

layout/painting/nsCSSRenderingBorders.cpp#2845-2847
layout/painting/nsCSSRenderingBorders.cpp#2745-2748

D9 dom/xslt/xslt/txMozillaXSLTProcessor.cpp#881-890
dom/xslt/base/FtxDouble.cpp#52-53
dom/base/DirectionalityUtils.cpp#613-619
dom/base/DirectionalityUtils.cpp#1069-1070
dom/base/DirectionalityUtils.cpp#339-341

D10 layout/base/PresShell.cpp#9665-9667
D11 dom/base/DirectionalityUtils.cpp#613-619
D12 layout/tables/nsTableFrame.cpp#3018-3034
D13 dom/svg/DOMSVGLength.cpp#297-298

dom/svg/SVGElement.cpp#704-706
dom/svg/SVGPathData.cpp#476-481
dom/svg/DOMSVGAngle.cpp#105-107
dom/svg/DOMSVGAngle.cpp#28-30

Table 2: Overview of the developer chats and the dis-
cussed coverage gaps. The coverage gaps can be viewed via:
https://searchfox.org/mozilla-central/rev/8329a650e3b4
f866176ae54016702eb35fb8b0d6/<text in 2nd column> (also
hyperlinked in that column). The given line numbers are
the first and last uncovered line of the coverage gap.

Figure 7: A coverage gap that that should be closed to
test important edge cases according to D10. The gap is at
layout/base/PresShell.cpp#9665-9667.

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/media/platforms/PDMFactory.cpp#678-680
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/media/platforms/PDMFactory.cpp#725-727
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGFEImageElement.cpp#191-196
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/events/ContentEventHandler.cpp#1752-1755
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGMotionSMILAnimationFunction.cpp#90-105
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGLength.cpp#297-298
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#2418-2425
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/generic/nsBlockFrame.cpp#1133-1142
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/html/HTMLSharedElement.cpp#96-102
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/style/GeckoBindings.cpp#1397-1401
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGStyleElement.cpp#164-167
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/svg/SVGTextFrame.cpp#3922-3926
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/gfx/thebes/gfxFont.cpp#1530-1533
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/svg/SVGTextFrame.cpp#2881-2883
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/editor/libeditor/EditorBase.cpp#2888-2890
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGFETileElement.cpp#51-55
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRenderingBorders.cpp#2845-2847
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRenderingBorders.cpp#2745-2748
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/xslt/xslt/txMozillaXSLTProcessor.cpp#881-890
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/xslt/base/FtxDouble.cpp#52-53
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#1069-1070
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#339-341
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/tables/nsTableFrame.cpp#3018-3034
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGLength.cpp#297-298
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGElement.cpp#704-706
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGPathData.cpp#476-481
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGAngle.cpp#105-107
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGAngle.cpp#28-30
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667

Mind the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

external specification (D2, D4). D11 motivates that the code in
Figure 8 should be tested because it uses raw pointers, which are
error-prone and may lead to null pointer or use-after-free errors.

On the other hand, the developers gave a variety of reasons
for why the code in the coverage gap is not worth the effort
of testing. One reason is that they think it is unlikely that
there is a bug in the code, because the function did not change
in the last 10 years (D3), no bug reports have been opened in that
area for a long time (D3, D8), or it is legacy code that should not
receive any changes in the future, as it serves as a fallback to a
newer implementation (D8). For the coverage gap discussed with
D7, “it’s hard to find how to run the path” because they are currently
rewriting the component to use the functionality less and less, and
planning to eventually remove the code all together. Other coverage
gaps are described as unlikely to be reached because it is a do-
nothing fallback for an error in a third party library (D4, D6, talking
about the coverage gap shown in Figure 9), or the developers expect
the case to rarely happen in practice (D4, D8).

Similar to Bugzilla report 1817173, we again encountered cases
where, according to the developer, the code should actually be
covered by tests (D5 about three coverage gaps, D8 about two
coverage gaps). For D8, the separate job running the relevant tests
is not executed during the CI runs that calculate the coverage.

5.2 Different Ways to Address Coverage Gaps
Throughout the conversations, the developers we chatted with
brought up ways to address the coverage gaps that differ from
completing the partial fuzz tests we could generate. An overarching
concern was whether it would be easier to manually write a
test from scratch (D4, D6). D13 points out that “it’s not hard for a
developer that knows SVG to come upwith tests that hit those lines”.
D8 directly starts describing a fitting test scenario for one of the
coverage gaps we asked about, and D6 explains “I think this would
be simplest to write manually, having identified the relevant code
path”. D9 stresses that “depending on how good/bad the generated
[tests] are it might be easier to just have someone write them in
the first place.”

One of the coverage gaps discussed with D6 (see Figure 9) was
described by them as “would only be used in case of some kind
of failure within [a third-party] library”, and in that case likely
another failure appeared earlier, making the code under test very
unlikely to be reached. To validate that this is indeed dead code,
they propose to add an assertion that triggers a crash in the regular
fuzzing runs, and possibly later an “unreachable” assertion to the
production code base to alert the team in case the code does become
reachable through future changes. D4 recounted that for one of the

Figure 8: A coverage gap that that should be closed according
to D11, because the code uses raw pointers. The gap is at
dom/base/DirectionalityUtils.cpp#613-619.

Figure 9: A coverage gap that is a do-nothing fall-
back for a third party library and therefore unlikely
to be reached according to D4 and D6. The gap is at
layout/painting/nsCSSRendering.cpp#4112-4113.

coverage gaps the team considered adding a crashtest, but that the
value of this would be minimal as the code is already hit by the
regular fuzzing runs. These examples indicate that the developers
consider the regular fuzzing runs as an alternative to address
missing coverage, increasing the confidence that these code paths
do not lead to crashes or that they are unreachable.

Based on our conversation with D5, three follow-up bug reports
were filed. One, the developer filed immediately, discussing an
inconsistency between different browser implementations that they
discovered by looking at the coverage gap we pointed them to.
The report was resolved by adding a cross-browser test for the
inconsistency and removing the code causing the inconsistency,
including the coverage gap. D5 also asked us to file bugs to remove
the code from two of the coverage gaps as the code had become
obsolete with a previous change. Together with the reaction to the
Bugzilla report 1817219 in our first study, we can see that pointing
to coverage gaps can also nudge developers to delete code that
became obsolete.

5.3 Needs of Developers and How To Improve
Our Approach

In our opening messages to the developers, we pointed to our
project of generating tests for the coverage gaps we asked about.
Because of this, several of the developers also reflected on the
usefulness of such tests and the process of proposing them. D11
was open to try out the generated tests, but stressed that the test
should conform to the common test frameworks in the project.
They also proposed to directly add the test as a patch to the code
review platform where the developers can edit the test assertions.
D3 stated that it would be more useful to receive the test at the
time of writing the patch that introduces the targeted line of
code, as compared to receiving the tests weeks later.

Several developers saw some value in providing a generated
test alongside pointing to the coverage gap. D6 explained that it is
useful to know that a piece of uncovered code could be covered,
the generated test can prove that the code is reachable. They
also describe that the information about the coverage gaps can sur-
face which “combinations of features are going untested at present.”
With D12 we discuss a coverage gap that they described as a con-
dition “not going through the normal . . . process.” We provided
D12 with our generated fuzz test and they opened an issue with it
to “use the test case as a start point to investigate if the [covered]

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and Alberto Bacchelli

branch makes sense or not.”10 The generated tests can also be a
starting point and inspiration for a developer familiar with the code
to write a complete correctness test case (D4). Three developers (D6,
D11, D13) pointed out the knowledge required to complete the
tests and determine “what the correct behavior . . . of the test case
should be” (D6). This would require familiarity with the domain of
the code (D13) or reading specifications to ensure they are followed
(D11).

The effort required by the developers to complete the tests
was seen as problematic by several of our conversation partners.
D11 worries that tests that one needs to spend time to complete will
be ignored because “We’re already busy enough with intermittently
failing tests and what not.” For the coverage gap discussed with D7
(see Figure 10), they state that it is fine to add a complete generated
test, but “that it’s not worthwhile to use the developers’ time [to
write a test] for the edge case.”

Answer to RQ2: What are developers’ opinions about clos-
ing the coverage gaps remaining after our filter?:
While our filter successfully excluded coverage gaps clearly not
worth covering, several remaining gaps were considered not
worth the effort to cover because the developers found it un-
likely that there is a bug in the code, the code is unlikely to be
reached, or should already be covered by other tests.
Several developers pointed out that it might be easier to manu-
ally write a test from scratch than to understand the generated
test, and regular fuzzing runs covering code was seen as an
alternative to address missing test coverage.
The generated tests can serve as a proof that the targeted code is
reachable by a test, but the developers caution about the knowl-
edge and effort required to complete the partial test. To improve
our approach, they propose to provide tests that already con-
form to their common test framework and provide them at the
time of submitting the patch with the code under test.

6 DISCUSSION
The feedback from the developers indicate that filtering out single-
line and early return coverage gaps helps to eliminate “clearly too
simple to be worth testing” coverage gaps. Nevertheless, we noted
several more reasons that make a coverage gap less relevant for
testing. A crucial aspect is the effort required by the developers.
Even for coverage gaps described as relevant to test, developers
stated that they do not have the time to write a test or complete a
generated one, compared to the other tasks they have to complete.

Our initial idea was to relieve parts of the developer’s efforts by
generating partial tests that reach coverage gaps in their code base.
However, we learned to be careful about the additional effort that
we put on developer’s shoulders when they have to understand a
generated test before completing it. In the following, we discuss
the implications of our observations for software engineering prac-
titioners, tool builders that want to support them, and researchers
in our field.

10https://bugzilla.mozilla.org/show_bug.cgi?id=1832450

6.1 Implications for practitioners
In practice, code coverage can be used as a metric by management
to judge the quality of testing performed in their teams [23, 27]. The
observations in both our studies indicate that not all “missing”
coverage is equally worth testing. This points to the need for
a more refined metric that takes into account the test-worthiness
and the required effort to test a coverage gap when measuring the
quality of testing. The repeated mention of the effort to understand
the generated test and the code under test, as well as the wish to
receive the test at the time of writing the code, points to the value
of investing in testing at an early stage in development, as the cost
of adding the tests later is higher.

6.2 Implications for tool builders, developer
supporters

A recurring concern in the second study was the effort to under-
stand and complete the generated tests. When trying to outsource
difficult parts of automation tasks like generating assertions on to
human users, we need to make sure that we provide value compared
to the user doing the whole task themselves, like writing complete
tests from scratch. We saw understanding the generated test is a
hurdle to completing it with assertions. With automated generation
tools becoming much more popular (e.g., GitHub Copilot and Chat-
GPT) the work of developers is moving from engineering solutions
to evaluating and adapting solutions generated by machines. We
conjecture that the next steps need to be to invest in supporting
the developers in understanding generated code and tests. One way
would be to study and build dedicated tools for this task.

A different option would be to leverage the power of now popu-
lar large language models to make the generated fuzz tests more
human-readable, or to generate assertions automatically by prompt-
ing the model with the generated test and the code under test. To
make the generated tests more useful for the developers, we should
extend the filter we presented in order to identify code that is worth
testing. To reduce the cost of adding a test, we could generate the
tests earlier in the development process: at the time the developer
is writing the code or a reviewer is reviewing it, reducing the need
of context switching.

6.3 Implications for researchers
In both our studies we made initial observations that not all cover-
age gaps are equally worth testing. This calls for a more detailed
study on how to prioritize coverage gaps, what factors influence
the test-worthiness of a coverage gap and how to reliably measure
these factors. We conjecture that such factors would be very project
/ company / context dependent. Already in this context we saw that
security concerns (point to zero-day bug in 1817159) might weigh
stronger than pure code quality improvements (1817159 improving
exception testing, but staying in backlog). In addition, we saw hesi-
tancy to touch legacy code that has been running without a link to
bugs for long years, as maybe the less risky option to not touch a
running system.

Further, in both studies we saw a variety of ways the develop-
ers proposed to address our reports or pointers to coverage gaps.
Next to writing a test, they also removed code or proposed to add
assertions for the regular fuzzing runs to be notified in case the

Mind the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Figure 10: The coverage gap we discussed with D7. The gap is at editor/libeditor/EditorBase.cpp#2888-2890.

coverage gap becomes reachable. This indicates that functional
testing is not the only way to “cover”/“secure” a line of code,
and metrics we develop to measure the testedness of code should
include these other activities.

6.4 Threats to Validity
There are several threats to the validity of the observations in both
our studies and the conclusions we draw from them. A threat to the
internal validity is the presence of a social desirability bias, where
the developer might have been inclined to answer overly positive
about adding tests. To mitigate the impact on our conclusions, we
closely report on the developer’s statements and the visible actions
on the code that followed. While we did receive rationales for why
coverage gaps should be closed, we also report on the effort that
developers saw and that in many cases led to them not following
up and addressing the coverage gap.

Concerning confirmability, the threat that the results are shaped
by the researcher instead of the respondents, the analysis of the chat
conversations with the developers was independently performed
by two authors, and we came to a consensus on the observations
and conclusions. These and the summary of the observations from
the Bugzilla reports were communicated to and confirmed by the
other authors.

With respect to internal generalizability, we expect that our ob-
servations do generalize to industrial open-source projects and com-
panies with a similar size and positioning towards testing. Looking
at external generalizability, developers from projects with less fa-
miliarity to fuzz testing likely would not point to fuzzing as a way
to address the coverage gaps. This and other findings should only
carefully be generalized, and we encourage other researchers to
replicate our studies in other contexts.

7 RELATEDWORK
Previous work has studied the introduction of automated test gen-
eration tools in industrial contexts. Brunetto et al. [11] report on
their experience introducing a tailored automatic GUI test gener-
ator in a medium-sized company. A difficulty they faced was the
automatic generation of functional oracles, which they mitigated

by providing rich reports to support engineers checking the effect
of the test on the system. In their lessons learned, they note that
automation is welcome in industry, but only useful if the testers
can understand and interpret the produced tests. This matches the
developer’s comments in our study on the additional effort to un-
derstand the generated tests compared to writing the tests from
scratch. Brunetto et al. report that integrating the output of the test
generation into the workflow and tooling of the company was a key
factor to enable the adoption of the tool. Further, manually-specified
functional oracles would increase the effectiveness of generated test
cases. However, a cost-effective way to define these automated ora-
cles (for system-level UI tests in their case) is still an open challenge.
In a similar vein, Mesbah et al. [24], who built a tool for automated
test case generation for AJAX web applications, note the effort and
required knowledge for a developer to specify invariants that can
serve as oracles for the correctness of the software behavior. In a
survey of 225 software developers, Daka and Fraser [15] find that
automated test generation in mainly used with automated oracles,
i.e., finding crashes or undeclared exceptions.

Almasi et al. [1] studied the industrial applicability of EvoSuite
and Randoop in a financial company. Through generating tests for
25 real faults from the history of the companies’ software system
and a survey under their developers, they found that in more than
half of the cases, more appropriate assertions would have led to
the detection of the faults with generated tests. The developers ex-
pected the automated generation tools to integrate with their build
pipeline and workflow, and were concerned about the readability of
the generated tests, input data and assertions. Xie et al. [30] report
on their experiences from industrial workshops on teaching testing
tools, including the test generator Pex for C# which generates par-
tial tests that developers have to write assertions for. They learned
that the developers tended towards staying with the assertion-less
automatically generated tests rather than writing assertions for
them. Further they pointed to the need to explicitly teach them how
they should interact with the generated tests and communicate
why the tests were generated with such values.

Zhang et al. [35] present an approach to fuzz test remote proce-
dure call APIs and evaluate it within an industrial context. They
report challenges with isolating the test environment (resetting the

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/editor/libeditor/EditorBase.cpp#2888-2890

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and Alberto Bacchelli

state of the application, data preparation and mocking of external
services) and propose to enable the fuzzer on the CI to promote
its adoption in industry. They also point to the importance of non-
flakiness and readability of the generated tests as crucial to be
considered when testing industrial APIs. Plöger et al. [26] evalu-
ated the usability of two fuzzers (AFL and libFuzzer) with computer
science students. They reported very low usability across all steps
of the fuzzing process and gave a variety of recommendations on
how to improve, such as UI guidance through the fuzzing process,
better error messages, and crash analysis support.

8 CONCLUSION AND FUTUREWORK
In this paper, we set out to explore whether partial tests gener-
ated by fuzzers and completed by developers can help alleviate
the developer’s effort of creating tests. For this, we developed a
prototype within the Mozilla ecosystem. Through the discussions
on 13 Bugzilla reports we created with our prototype, we observed
that the code targeted by the tests is a main concern for developers
before considering the fuzz tests. More specifically, the developers
sometimes indicated that a coverage gap is not worth the effort
to be tested. We dove deeper into the test-worthiness of coverage
gaps by designing a filter to exclude small and early return cover-
age gaps. From discussing the remaining gaps with developers, we
learned that the filters are effective in excluding clearly irrelevant
coverage gaps, but there remain many considerations when decid-
ing whether testing a coverage gap is worth the effort. Remaining
gaps were considered not worth the effort to cover because the
developers found it unlikely that there is a bug in the code, the code
is unlikely to be reached, or should already be covered by other
tests. In addition, we saw that there are other ways than functional
tests that developers propose to address missing coverage.

Several opportunities for future work follow from our studies.
Apart from the aforementioned implications for researchers, the
factors of relevance concerning coverage gaps should be studied
in other industrial or open source contexts, as we conjecture their
priorities to be different between projects and developers. Con-
structing more reliable coverage calculations, that also include test
suites not run on the regular CI runs and other quality assurance or
security testing techniques, would provide a more accurate picture
of missing coverage and therefore a more reliable basis to guide
test generation efforts. Another interesting extension would be to
combine the fuzz tests with an automatic approach for assertion
generation and study whether confirming a generated assertion re-
duces the developer’s understanding effort far enough to make the
approach viable compared to writing tests manually from scratch.

ACKNOWLEDGMENTS
This research was partially funded by the Dutch science founda-
tion NWO through the Vici “TestShift” grant (No. VI.C.182.032). A.
Bacchelli acknowledges the support of the Swiss National Science
Foundation for the SNSF Project 200021_197227. Further support
came from the Swiss National Science Foundation (SNSF Grant
200021M_205146).

A FUZZING-DISCOVERED SECURITY
VULNERABILITIES AT MOZILLA

The graph in Figure 2 is constructed by querying the Bugzilla data-
base for all resolved security vulnerabilities with a critical or high
rating on 2023-07-22. For all bugs that were opened in 2018, re-
ceived a security rating critical or high, and were resolved, run
this query:
https :// bugzilla.mozilla.org/buglist.cgi?

chfieldfrom =2018 -01 -01&

chfieldto =2018 -12 -31&

chfield =%5 BBug %20 creation %5D&

keywords=sec -high%2C%20sec -critical %2C%20&

classification=Client %20 Software&classification=Developer %20

Infrastructure&classification=Components&classification=Server %20

Software&classification=Other&

query_format=advanced&

keywords_type=anywords&

resolution=FIXED&resolution=WONTFIX&resolution=INACTIVE&resolution

=DUPLICATE&resolution=WORKSFORME&resolution=INCOMPLETE&resolution=

SUPPORT&resolution=EXPIRED&

To only see bugs from this search that were reported by the fuzzing
team, append to the above query:
emailreporter1 =1&

emailassigned_to1 =1&

emailtype1=exact&

emailcc1 =1&

email1=fuzzing %40 mozilla.com&

To obtain the values for the following years, we changed the year
numbers in chfieldfrom and chfieldto. As this is querying the
public Bugzilla database, bugs that are (still) hidden from the public
are not included in the results. Focusing on bugs that have been
resolved might bias the results towards fuzzing because fuzzing
reports are reproducible, which can make them quicker to fix than
other bugs that are harder to diagnose or fix.

REFERENCES
[1] Mohammad Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and

Janis Benefelds. 2017. An Industrial Evaluation of Unit Test Generation: Finding
Real Faults in a Financial Application. In 39th IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 263–
272.

[2] Domagoj Babic. 2017. SunDew: Systematic Automated Security Testing (Keynote).
In ACM SIGSOFT International SPIN Symposium on Model Checking of Software.
ACM, 10.

[3] Kent L. Beck. 2003. Test-Driven Development - By Example. Addison-Wesley.
[4] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven

Amann, and Andy Zaidman. 2019. Developer Testing in the IDE: Patterns, Beliefs,
and Behavior. IEEE Trans. Software Eng. 45, 3 (2019), 261–284.

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, How, and Why Developers (Do Not) Test in Their IDEs. In 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, 179–190.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (Much) Do De-
velopers Test?. In 37th IEEE/ACM International Conference on Software Engineering
(ICSE). IEEE, 559–562.

[7] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges,
Dreams. In International Conference on Software Engineering (ISCE), Workshop on
the Future of Software Engineering (FOSE). IEEE CS, 85–103.

[8] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Chal-
lenges and Reflections. IEEE Softw. 38, 3 (2021), 79–86.

[9] Carolin Brandt and Andy Zaidman. 2022. Developer-centric Test Amplification.
Empir. Softw. Eng. 27, 4 (2022), 96.

[10] Carolin Brandt and Andy Zaidman. 2022. How Does This New Developer Test Fit
In? A Visualization to Understand Amplified Test Cases. In Working Conference
on Software Visualization (VISSOFT). IEEE, 17–28.

[11] Matteo Brunetto, Giovanni Denaro, Leonardo Mariani, and Mauro Pezzè. 2021.
On introducing automatic test case generation in practice: A success story and
lessons learned. J. Syst. Softw. 176 (2021), 110933.

[12] Magiel Bruntink and Arie van Deursen. 2004. Predicting Class Testability Using
Object-Oriented Metrics. In 4th IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM). IEEE, 136–145.

Mind the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

[13] Gul Calikli and Ayse Bener. 2015. Empirical Analysis of Factors Affecting Confir-
mation Bias Levels of Software Engineers. Softw. Qual. J. 23, 4 (2015), 695–722.

[14] Bas Cornelissen, Arie van Deursen, LeonMoonen, and Andy Zaidman. 2007. Visu-
alizing Testsuites to Aid in Software Understanding. In 11th European Conference
on Software Maintenance and Reengineering (CSMR). IEEE, 213–222.

[15] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In 25th IEEE International Symposium on Software Reliability Engineer-
ing (ISSRE). IEEE CS, 201–211.

[16] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
2019. Automatic Test Improvement With DSpot: A Study With Ten Mature
Open-Source Projects. Empir. Softw. Eng. 24, 4 (2019), 2603–2635.

[17] Amirhossein Deljouyi and Andy Zaidman. 2023. Generating Understandable
Unit Tests through End-to-End Test Scenario Carving. In Proceedings of the
International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 107–118.

[18] Mozilla Documentation. [n.d.]. Mochitest. https://firefox-source-docs.mozilla.
org/testing/mochitest-plain/index.html

[19] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE) and 13th European Software Engineering
Conference (ESEC). ACM, 416–419.

[20] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM 55, 3 (2012), 40–44.

[21] Bruce Hanington and Bella Martin. 2012. Universal Methods of Design: 100 Ways
to Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Rockport.

[22] Pavneet Singh Kochhar, Xin Xia, and David Lo. 2019. Practitioners’ Views on
Good Software Testing Practices. In 41st IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE/ACM,
61–70.

[23] Brian Marick, John Smith, and Mark Jones. 1999. How to misuse code coverage.
In Proceedings of the 16th Interational Conference on Testing Computer Software.
16–18.

[24] AliMesbah, Arie vanDeursen, andDanny Roest. 2012. Invariant-BasedAutomatic
Testing of Modern Web Applications. IEEE Trans. Software Eng. 38, 1 (2012), 35–
53.

[25] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The Impact of Test Case Summaries on Bug Fixing Perfor-
mance: An Empirical Investigation. In 38th IEEE/ACM International Conference
on Software Engineering (ICSE). ACM, 547–558.

[26] Stephan Plöger, Mischa Meier, and Matthew Smith. 2023. A Usability Evaluation
of AFL and libFuzzer With CS Students. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI). ACM, 186:1–186:18.

[27] Christian R. Prause, Jürgen Werner, Kay Hornig, Sascha Bosecker, and Marco
Kuhrmann. 2017. Is 100% Test Coverage a Reasonable Requirement? Lessons
Learned From a Space Software Project. In Product-Focused Software Process
Improvement - 18th International Conference, (PROFES) (Lecture Notes in Computer
Science, Vol. 10611). Springer, 351–367.

[28] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated Unit
Test Generation During Software Development: A Controlled Experiment and
Think-Aloud Observations. In International Symposium on Software Testing and
Analysis (ISSTA). ACM, 338–349.

[29] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci, Harald C.
Gall, and Alberto Bacchelli. 2019. On the Effectiveness of Manual and Automatic
Unit Test Generation: Ten Years Later. In 16th International Conference on Mining
Software Repositories (MSR). IEEE/ACM, 121–125.

[30] Tao Xie, Jonathan de Halleux, Nikolai Tillmann, and Wolfram Schulte. 2010.
Teaching and Training Developer-testing Techniques and Tool Support. In Com-
panion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA). ACM, 175–182.

[31] Wen Xu, Soyeon Park, and Taesoo Kim. 2020. FREEDOM: Engineering a State-
of-the-Art DOM Fuzzer. In CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 971–986.

[32] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2023. The Fuzzing Book. CISPAHelmholtz Center for Information Security.

[33] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[34] Google Project Zero. [n.d.]. The Great DOM Fuzz-off of 2017. https://
googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html

[35] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2022.
White-box Fuzzing RPC-based APIs With EvoMaster: An Industrial Case Study.
CoRR abs/2208.12743 (2022).

https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html
https://googleprojectzero.blogspot.com/2017/09/the-great-dom-fuzz-off-of-2017.html

	Abstract
	1 Introduction
	2 Fuzzing To Inspire Functional Tests
	2.1 Inspiration Through Fuzzing-based Tests
	2.2 Instantiation in the Mozilla Ecosystem

	3 Proposing Inspirational Fuzzing-Based Tests To Developers
	3.1 Study Design and Execution
	3.2 Developer Reactions

	4 Selecting Relevant Coverage Gaps
	5 Do Developers Think These Coverage Gaps Should Be Tested?
	5.1 Test Relevance of the Filtered Coverage Gaps
	5.2 Different Ways to Address Coverage Gaps
	5.3 Needs of Developers and How To Improve Our Approach

	6 Discussion
	6.1 Implications for practitioners
	6.2 Implications for tool builders, developer supporters
	6.3 Implications for researchers
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	A Fuzzing-discovered Security Vulnerabilities at Mozilla
	References

