
Towards Refined Code Coverage:
A New Predictive Problem in Software Testing

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Aurora Ramı́rez
University of Córdoba

aramirez@uco.es

Abstract—To measure and improve the strength of test suites,
software projects and their developers commonly use code
coverage and aim for a threshold of around 80%. But what is the
80% of the source code that should be covered? To prepare for
the development of new, more refined code coverage criteria, we
introduce a novel predictive problem in software testing: whether
a code line is, or should be, covered by the test suite. In this short
paper, we propose the collection of coverage information, source
code metrics, and abstract syntax tree data and explore whether
they are relevant to predict whether a code line is exercised by
the test suite or not. We present a preliminary experiment using
four machine learning (ML) algorithms and an open source Java
project. We observe that ML classifiers can achieve high accuracy
(up to 90%) on this novel predictive problem. We also apply an
explainable method to better understand the characteristics of
code lines that make them more “appealing” to be covered. Our
work opens a research line worth to investigate further, where the
focus of the prediction is the code to be tested. Our innovative
approach contrasts with most predictive problems in software
testing, which aim to predict the test case failure probability.

Index Terms—Code Coverage, Test Adequacy, Software Test-
ing, Machine Learning, Explainable Artificial Intelligence

I. INTRODUCTION

The extent to which tests cover the structure of source
code—code coverage—has been used and debated for years
as a test adequacy criterion. Studies show that coverage itself
is not well correlated with post-release bug detection [1],
and researchers propose stronger criteria such as mutation
score [2], [3] or checked coverage [4], [5]. However, code
coverage is widely used as a quality indicator for test suites
[6]–[8], possibly due to its greater understandability [9], [10].

Coverage can serve as a necessary, but not a sufficient,
quality criterion [11]: To have a strong test suite in terms
of bug detection, you need high coverage, but high coverage
is not sufficient to prove a test suite is strong. The basis
for this is that in order to find a fault in code via testing,
we need to at least execute that code during testing. While
academically we claim that coverage alone is not sufficient,
in practice projects are recommended to strive for a coverage
threshold of 80%. The rationale is that covering every bit of
code might not be worth the engineering effort compared to the
benefits gained from these tests [12]. Recent studies indicated
that not all uncovered lines are worth covering according to
developers [13], [14]. This leads us to the question of how
we can effectively identify those lines of code that should be
covered and distinguish them from lines that are less critical.

With this paper, we take the first steps towards a new
adequacy criterion of refined code coverage, which takes
into account the diversity of code lines to provide a more
realistic—in the real-world project sense—judgment of how
relevant it is to cover a given line of code. To start off,
we propose learning from projects and their test suites, by
studying the line-by-line code coverage. Our hypothesis is
that if we can characterize the covered lines, then it would
be possible to determine whether lines from other projects
should be covered or not using machine learning (ML). As
a first attempt, we propose the definition of characteristics
of the source code at the line and method level, based on
the common features such as size, complexity, function calls,
etc. We also explore specific features related to the construct
block and statements to identify whether certain functions
(e.g., constructors) and control statements (conditional, loops,
exceptions) are more frequently covered. After extracting the
features for an example project, we analyze the performance
of four ML algorithms. Our preliminary results are promising,
as some algorithms achieve an accuracy of 90%. Inspection of
the most relevant features suggests that predictions are based
on a variety of properties, both related to size (line length), the
method where the code line appears, and—less often—what
the code line represents itself (type of statement).

II. BACKGROUND AND RELATED WORK

In this section, we discuss relevant related work on code
coverage and machine learning for software testing. For this
study, “code coverage” refers to line coverage, sometimes
also called statement coverage. Alternative structural coverage
metrics are instruction or branch coverage [12]. We focus on
line coverage, as it is widely used by developers, especially
when visualizing code coverage [9], [15].

A. Studies of Code Coverage

Several studies explore what code is (not) covered by tests.
Hora [16] found that popular Python projects exclude code
from coverage that is non-runnable, debug-only, defensive, or
platform-specific. The developers’ motivation is that the code
is low-level, complex or not tested. Zhai et al. [17] observe
that for libraries, more deeply nested code is significantly less
likely to be covered. Older code is more likely to be covered,
while exception handling statements are covered much less
frequently than other statements. Lima et al. [18] also find for



Java that exception-handling code is less covered than other
code. In the JUnit project [19], van Deursen observes that
deprecated code is less covered. The same applies to small
blocks that are described as “too simple to test”, “dead by
design” or behaviors that are unlikely to happen, such as
exception throwing and handling. We build our proposal on
these findings, including features related to the type of code
statement, e.g., whether a line belongs to a try/catch block.

Other work focuses on uncovered code and whether to
nudge developers to cover it. Brandt et al. [13] observed that
Mozilla developers find some coverage gaps not worth closing
because they are small or concern early returns for invalid
inputs. Gaps were also less important to close when they were
unlikely reached or unlikely buggy because they are old and
rarely changed. Ivanković et al. [14] identified uncovered code
that should be tested by unit tests, by calculating the similarity
to tested and frequently executed code.

A third angle to investigate is coverage evolution. Chen
et al. [20] study test executions and coverage evolution for
Java projects, concluding that coverage typically decreases
in test-failure-introducing commits. Hilton et. al. [21] zoom
in on how a change impacts the coverage of changed and
not changed lines, concluding that aggregated code coverage
can be misleading. Patches that appear to leave coverage
unchanged can still change which lines are covered. They call
for tools to also show why coverage changed. In contrast to
these works, we take a snapshot look at code coverage at a
given point in time and dive deeper into characterizing the
lines of code that are (not) covered.

B. Machine Learning for Software Testing

Machine learning (ML) provides effective algorithms to
solve complex predictive problems in software testing [22].
The goal is to predict a target variable as a combination
of several input variables [23]. When the target variable is
discrete, e.g., a boolean value, a classification problem is
defined. If the variable is continuous, a regression problem
is solved. In software testing, the input variables—features in
ML terminology—are metrics extracted from the test code,
such as length or coverage, and the testing process, such as
number of previous executions and failure rate [24]. We focus
on supervised learning [25], whose training strategy consists
in using part of the collected data (train dataset) to build the
predictive model. The train dataset includes labeled samples,
i.e., both features and target values are known, so that the
algorithm searches for the best fit between features and target
variable. To assess the generalization prediction ability of the
predictive model, the remaining part of the data is considered.
The test dataset serves to compare the predicted result with
the actual target values for previously unseen samples.

Supervised learning to assist in testing activities has been
widely explored in recent years but has mainly focused on
making predictions about different aspects of test cases. Some
examples of regression problems are the estimation of test case
readability [26], the estimation of branch coverage in search-
based test case generation [27], the prediction of coverage

in compiler testing [28] or software testing effort estimation
expressed in person-hours [29]. As for classification, test
case selection and prioritization are often supported by ML
techniques [30]. Recent studies have also applied this approach
to test smell detection [31], flaky test detection [32], and
choosing CI configurations for automated testing [33].

ML models can exhibit high accuracy in their predictions,
but at the cost of complex decision mechanisms that prevent
software developers from understanding how decisions are
made [34]. Providing explanations together with the predic-
tions is highly relevant in many software testing scenarios [35].
Previous studies have applied explainable methods to know
why a particular test case should be prioritized [35], [36] or
which coverage metric is more decisive for estimating the
mutation score of test cases [37].

III. CHARACTERIZING COVERED
VS. NOT COVERED LINES

A. Data Collection

We collect various types of data: (1) coverage, (2) metrics,
and (3) code structure data. For this initial, exploratory study,
we limit the scope to one open source Java project. We pick the
project, allegro/hermes, from Khatami and Zaidman’s
set of projects [6], [38]. For this project, we were able to auto-
matically build and calculate Jacoco coverage. After cloning
the project1, we run the following tools: (1) Jacoco [39]
to calculate the detailed code coverage of the existing test
suite, and (2) ck [40] to calculate a broad set of method-level
metrics. Finally, (3) we perform a basic abstract syntax tree
(AST) analysis with tree-sitter [41] to determine the
AST node that spans a line of code.

B. Feature Definition

We assemble our features from the collected data. The target
value isCovered is true if at least one instruction in the line
is covered according to Jacoco.

The method-level metrics from ck are the same for all lines
within a method. The first group of them mainly counts occur-
rences of language elements, and can be found in Figure 1b.

From ck we also take object-oriented and size metrics (Fig-
ure 1a): methodLine, the line number where the method starts;
cbo (“coupling between objects”), number of dependencies
excluding standard library; cboModified, cbo including refer-
ences to the method by other types; fanin, number of input
dependencies that reference this method; fanout, number of
output dependencies referenced by this method; wmc (“weight
method class”), McCabe’s cyclomatic complexity, number of
branching instructions; loc, source lines of code, excluding
empty lines and comments.

Lastly, we determine the type of code statement, looking at
the source code of the line and the AST node that spans it.
The list of features can be found in Figure 1c.

1https://github.com/allegro/hermes, at commit d6cce21c



is
C

ov
er

ed cb
o

cb
oM

od
ifi

ed
fa

ni
n

fa
no

ut
w

m
c

lo
c

lin
eL

en
gt

h
m

et
ho

dL
in

e
ha

sJ
av

aD
oc

isCovered
cbo

cboModified
fanin

fanout
wmc

loc
lineLength

methodLine
hasJavaDoc 0.0

0.2

0.4

0.6

0.8

1.0

(a) Object-oriented and
size metrics

is
C

ov
er

ed
re

tu
rn

sQ
ty

va
ria

bl
es

Q
ty

pa
ra

m
et

er
sQ

ty
m

et
ho

ds
In

vo
ke

dL
oc

al
Q

ty
m

et
.In

v.
In

di
re

ct
Lo

ca
lQ

ty
lo

op
Q

ty
co

m
pa

ris
on

sQ
ty

try
C

at
ch

Q
ty

pa
re

nt
he

si
ze

dE
xp

sQ
ty

st
rin

gL
ite

ra
ls

Q
ty

nu
m

be
rs

Q
ty

as
si

gn
m

en
ts

Q
ty

m
at

hO
pe

ra
tio

ns
Q

ty
m

ax
N

es
te

dB
lo

ck
sQ

ty
la

m
bd

as
Q

ty
un

iq
ue

W
or

ds
Q

ty
m

od
ifi

er
s

lo
gS

ta
te

m
en

ts
Q

ty

isCovered
returnsQty

variablesQty
parametersQty

methodsInvokedLocalQty
met.Inv.IndirectLocalQty

loopQty
comparisonsQty

tryCatchQty
parenthesizedExpsQty

stringLiteralsQty
numbersQty

assignmentsQty
mathOperationsQty

maxNestedBlocksQty
lambdasQty

uniqueWordsQty
modifiers

logStatementsQty

0.0

0.2

0.4

0.6

0.8

1.0

(b) Frequency of code elements

is
C

ov
er

ed
co

ns
tru

ct
or

is
C

lo
si

ng
B

ra
ce

is
S

ta
te

m
en

t
is

Lo
op

D
ef

in
iti

on
is

In
Lo

op
B

od
y

is
C

on
di

tio
na

lD
ef

in
iti

on
is

In
C

on
di

tio
na

lB
od

y
is

In
Tr

yB
lo

ck
is

C
at

ch
B

lo
ck

D
ef

in
iti

on
is

In
C

at
ch

B
od

y
is

P
ar

tO
fL

am
bd

aE
xp

re
ss

io
n

is
Th

ro
w

S
ta

te
m

en
t

is
In

C
on

st
ru

ct
or

B
lo

ck
is

R
et

ur
nS

ta
te

m
en

t

isCovered
constructor

isClosingBrace
isStatement

isLoopDefinition
isInLoopBody

isConditionalDefinition
isInConditionalBody

isInTryBlock
isCatchBlockDefinition

isInCatchBody
isPartOfLambdaExpression

isThrowStatement
isInConstructorBlock

isReturnStatement 0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Type of code statements

Fig. 1: Correlation matrix between features (target feature: isCovered)

C. Data Preprocessing and Analysis

The initial dataset contains 20,741 samples (code lines)
and 65 features from the allegro-hermes project. We
exclude those features that serve to identify the line of code
(project, source file, method, line number, line content) and
some features used to derive others during code parsing. We
then perform standard procedures to analyze the samples and
obtain a dataset suitable for learning.
1) Data conversion: Features expressed as boolean values are

converted to use binary values (0/1).
2) Missing values: For some lines of code, the AST analysis

was not possible. Since the percentage of affected samples
(5.82%) is low, we remove samples with missing values.

3) Data normalization: Some features, especially code met-
rics, have different ranges of numerical values. We nor-
malized them using MinMaxScaler of sklearn library.

The cleaned dataset contains 18,564 samples and 47 fea-
tures. The dataset is fairly balanced, with 45.06% of the sam-
ples corresponding to covered lines and 54.94% of the samples
corresponding to uncovered lines. None of the final features
show a high correlation with the target variable, according
to the Pearson index. This indicates that estimating whether
a line of code will be covered is not a trivial classification
problem, as it will depend on a combination of features. Also
based on the Pearson index, we discard 5 features that exhibit
strong correlation (≥ 0.8) with others or have a unique value
for all samples. The final dataset has 42 features (including
the target). Figure 1 shows the Pearson correlation for each
group of features: code element frequency (18 features), size
and object-oriented metrics (9), and code statement type (14).
A notebook with the detailed analysis of the cleaned dataset
can be found in the replication package [42].

D. Algorithm Configuration, Training and Evaluation

The dataset is split into train and test partitions with a ratio
of 70:30 and ensuring the original distribution of the target

TABLE I: Configuration of classification algorithms

Algorithm Configuration
Decision class weight: “balanced”, criterion: “entropy”,
tree (DT) max depth: None, min samples leaf: 1
k-Nearest leaf size: 5, n neighbors: 4, p: 1,
Neighbors (kNN) weights: “distance”
Random class weight: “balanced”, max depth: None,
Forest (RF) min samples leaf: 1, min samples split: 3,

n estimators: 300

variable (class stratification). We use the train partition to build
four classifiers using the following sklearn algorithms:
Decision Tree (DT), k-Nearest Neighbors (kNN), Naive Bayes
(NB) and Random Forest (RF). We apply hyperparameter
optimization with grid search, using the training set and a 5-
fold cross-validation strategy. The configuration obtained for
each algorithm2 are shown in Table I. With the optimal config-
uration, we train the classifiers and evaluate the performance
on the test set. These performance metrics are: accuracy,
balanced accuracy, precision, recall, and f-measure. The f-
measure metric is employed during hyperparameter tuning.

After building the classifiers, we apply the importance
permutation method [43] to understand the influence of each
feature on the predictions. This method provides an average
performance degradation score for each feature, such that the
most relevant features are those that would cause the classifier
to reduce its accuracy the most. For tree-based classifiers (DT
and RF), we also inspect the internal decision structures to
understand the relevance of the features during training.

E. Performance Evaluation and Explainability

Table II shows the results obtained on the test partition
for the four applied algorithms. DT and kNN achieve higher
accuracy (0.9975) than RF (0.9944) during training, but RF
exhibits better generalization capabilities. NB performs poorly
on both the train and test partitions, suggesting that its assump-
tion about the independence of input features does not hold

2Naive Bayes is excluded as it does not have hyperparameters to optimize.



TABLE II: Classification results

Alg. Accuracy Bal. Accuracy Precision Recall F-measure
DT 0.8930 0.8933 0.8701 0.8964 0.8830
kNN 0.7923 0.7897 0.7729 0.7633 0.7681
NB 0.5966 0.5779 0.5779 0.3888 0.4649
RF 0.9023 0.9018 0.8876 0.8968 0.8922

Fig. 2: Feature importance in the RF classifier.

for this predictive problem. The precision and recall values are
well balanced for the DT and RF classifiers. Both classifiers
correctly predict almost the same number of covered lines of
code (true positives), but RF shows better precision due to a
lower false positive rate. Based on the metrics reported for
RF, we consider that predicting whether a line of code will be
covered or not based on the proposed features seems feasible.

Inspection of the DT and RF classifiers shows that four
features (methodLine, uniqueWordsQty, lineLength and cbo)
appear among the top-5 most relevant features. For DT, loc
is also important, while cboModified is slightly more relevant
than loc for RF. These features were the most relevant during
training, but they might not explain the influence on the predic-
tion of unseen data. To explain this, Figure 2 shows the result
of applying importance permutation on the RF classifier on the
test partition. While methodLine and cbo are still important
features, we observe that fanin, modifiers and parametersQty
have more impact on the predictions than uniqueWordsQty,
cboModified and loc. Equivalent plots are available for the
rest of classifiers in the replication package [42].

IV. DISCUSSION

While the good performance of the classifiers shows the fea-
sibility of the prediction problem: “Should this line be covered
by the test suite?”, the features that emerge as relevant for the
prediction allow for interesting observations and discussion.

Both coupling between objects (cbo/cboModified) and fanin
characterize how many dependencies a method has, either
by the types it uses or by the methods that call it. One

explanation for the high importance could be that being called
by many other methods makes it more likely the method
is executed when one of those invoker methods is tested.
Modifiers of a method determine whether a method can be
directly testable by unit tests (e.g., “yes” for public and “no”
for private methods). The number of parameters, unique words,
loc and line length can all indicate the complexity of a method
or line. More complex methods with potentially complicated
logic may warrant more tests to ensure their behavior remains
correct, while simple standard methods may be considered too
trivial to test [10], [19]. Particularly interesting is the feature
methodLine, which indicates the line in the file where a method
starts. This implies that the location of a method within the
source file can affect the likelihood of whether a line is tested.
One possible explanation is that key functionalities of a class
are implemented early and in the first methods, while edge
cases are added later and at the end of the class file. Later
methods may be tested less due to exceptional behavior, and
newer code is known to be less tested [17], [18].

What stands out is that features related to the method as
a whole (metrics, modifiers and quantities) are relevant to
the classifiers, while line-individual features like the AST
information are not as relevant. Potentially, this comes from
little variation in the coverage of one method, i.e., if the
method is covered, the tests run all lines. This interaction
between coverage and features of neighboring lines, and its
impact on coverage prediction, should be investigated further.

V. CONCLUSION AND OUTLOOK

Our investigation in this paper motivates deeper studies of
code coverage in Java projects, supported by explainable pre-
dictive models. Our first steps involving the problem definition,
feature extraction, and analysis of feature relevance shows that
this topic is interesting to be further explored from both the
ML and software testing perspectives.

As future work, the experimental study should be extended
with more software projects and ML algorithms to general-
ize our findings. This would help identify broader aspects
influencing whether a line is covered, but also to understand
how coverage differs across projects on a fine-grained level.
A second angle is considering which tests cover code, how
directly they test it (i.e., how many method calls are between
test and method) [44] and how often a line is executed by
the test suite. This would indicate how intentionally a line is
tested: Direct coverage by a few tests may indicate that the
line is deliberately tested, while indirect coverage by many
tests might be accidental coverage [9]. Finally, generating
contrastive explanations could provide testers with additional
knowledge to understand why a particular line of code should
be prioritized for testing compared to others.

ACKNOWLEDGMENTS

Work partially supported by Grant PID2023-148396NB-I00
funded by MICIU/AEI/10.13039/501100011033 and FEDER,
EU; and AI4Software research network (RED2022-134647-T)
funded by MICIU/AEI/10.13039/501100011033.



REFERENCES

[1] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code coverage and
postrelease defects: A large-scale study on open source projects,” IEEE
Trans. Reliab., vol. 66, no. 4, pp. 1213–1228, 2017.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in International Conference on Software
Engineering (ICSE). ACM, 2005, pp. 402–411.

[3] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path
coverage,” in International Conference on Software Testing Verification
and Validation (ICST) Workshops. IEEE CS, 2009, pp. 220–229.

[4] D. Schuler and A. Zeller, “Assessing oracle quality with checked cover-
age,” in IEEE International Conference on Software Testing, Verification
and Validation (ICST). IEEE CS, 2011, pp. 90–99.

[5] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with
test suite effectiveness,” in Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, 2015, pp. 214–224.

[6] A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in java-based open source software development,” Softw. Pract. Exp.,
vol. 54, no. 8, pp. 1408–1446, 2024.

[7] M. Ivankovic, G. Petrovic, R. Just, and G. Fraser, “Code coverage
at google,” in Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 2019, pp. 955–963.

[8] S. Berner, R. Weber, and R. K. Keller, “Enhancing software testing by
judicious use of code coverage information,” in IEEE/ACM International
Conference on Software Engineering (ICSE). IEEE CS, 2007, pp. 612–
620.

[9] C. Brandt and A. Zaidman, “How does this new developer test fit in? A
visualization to understand amplified test cases,” in Working Conference
on Software Visualization (VISSOFT). IEEE, 2022, pp. 17–28.

[10] ——, “Developer-centric test amplification,” Empir. Softw. Eng., vol. 27,
no. 4, p. 96, 2022.

[11] C. R. Prause, J. Werner, K. Hornig, S. Bosecker, and M. Kuhrmann,
“Is 100% test coverage a reasonable requirement? lessons learned from
a space software project,” in International Conference on Product-
Focused Software Process Improvement (PROFES), ser. LNCS, vol.
10611. Springer, 2017, pp. 351–367.

[12] M. Aniche, Effective Software Testing: A Developer’s Guide. Simon
and Schuster, 2022.

[13] C. Brandt, M. Castelluccio, C. Holler, J. Kratzer, A. Zaidman, and
A. Bacchelli, “Mind the gap: What working with developers on fuzz tests
taught us about coverage gaps,” in IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). ACM, 2024, pp. 157–167.

[14] M. Ivankovic, G. Petrovic, Y. Kulizhskaya, M. Lewko, L. Kalinovcic,
R. Just, and G. Fraser, “Productive coverage: Improving the actionability
of code coverage,” in International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). ACM, 2024, pp. 58–68.

[15] J. Lawrance, S. Clarke, M. Burnett, and G. Rothermel, “How well
do professional developers test with code coverage visualizations? An
empirical study,” in IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2005, pp. 53–60.

[16] A. Hora, “Excluding code from test coverage: Practices, motivations, and
impact,” Empirical Software Engineering, vol. 28, no. 1, p. 16, 2023.

[17] H. Zhai, C. Casalnuovo, and P. T. Devanbu, “Test coverage in python
programs,” in Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal,
Canada. IEEE / ACM, 2019, pp. 116–120.

[18] L. P. Lima, L. S. Rocha, C. I. M. Bezerra, and M. Paixão, “Assessing
exception handling testing practices in open-source libraries,” Empir.
Softw. Eng., vol. 26, no. 4, p. 85, 2021.

[19] (2012, 12) Line coverage: Lessons from junit. [Online]. Available:
https://avandeursen.com/2012/12/21/line-coverage-lessons-from-junit/

[20] A. R. Chen, T. P. Chen, and S. Wang, “T-evos: A large-scale longitudinal
study on CI test execution and failure,” IEEE Trans. Software Eng.,
vol. 49, no. 4, pp. 2352–2365, 2023.

[21] M. Hilton, J. Bell, and D. Marinov, “A large-scale study of test cover-
age evolution,” in ACM/IEEE International Conference on Automated
Software Engineering (ASE). ACM, 2018, pp. 53–63.

[22] V. Durelli, R. Durelli, S. Borges, A. Endo, M. Eler, D. Dias, and M. G.
aes, “Machine Learning Applied to Software Testing: A Systematic
Mapping Study,” IEEE Trans. Rel., vol. 68, no. 3, pp. 1189–1212, 2019.

[23] A. Ramı́rez and B. Miranda, “Foundations of machine learning for
software engineering,” in Optimising the Software Development Process
with Artificial Intelligence, J. Romero, I. Medina-Bulo, and F. Chicano,
Eds. Singapore: Springer Nature Singapore, 2023, pp. 309–344.

[24] A. Ramı́rez, R. Feldt, and J. R. Romero, “A taxonomy of information
attributes for test case prioritisation: Applicability, machine learning,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 1, pp. 21:1–21:42, 2023.

[25] S. Ajorloo, A. Jamarani, M. Kashfi, M. Haghi Kashani, and A. Na-
jafizadeh, “A systematic review of machine learning methods in software
testing,” Applied Soft Computing, vol. 162, p. 111805, 2024.

[26] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Joint Meeting on Foundations of
Software Engineering (ESEC/FSE). ACM, 2015, pp. 107–118.

[27] G. Grano, T. V. Titov, S. Panichella, and H. C. Gall, “Branch coverage
prediction in automated testing,” J. Softw. Evol. Process., vol. 31, no. 9,
2019.

[28] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
B. Xie, “Coverage Prediction for Accelerating Compiler Testing,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 261–278, 2021.

[29] C. López-Martı́n, “Machine learning techniques for software testing
effort prediction,” Software Quality Journal, vol. 30, pp. 65–100, 2022.

[30] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case se-
lection and prioritization using machine learning: a systematic literature
review,” Empirical Software Engineering, vol. 27, 2021.

[31] V. Pontillo, D. Amoroso d’Aragona, F. Pecorelli, D. Di Nucci, F. Fer-
rucci, and F. Palomba, “Machine learning-based test smell detection,”
Empirical Software Engineering, vol. 29, 2024.

[32] J. Wang, Y. Lei, M. Li, G. Ren, H. Xie, S. Jin, J. Li, and J. Hu,
“Flakyrank: Predicting Flaky Tests Using Augmented Learning to Rank,”
in 2024 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2024, pp. 872–883.

[33] A. Lönnfält, V. Tu, G. Gay, A. Singh, and S. Tahvili, “An intelligent
test management system for optimizing decision making during software
testing,” Journal of Systems and Software, vol. 219, p. 112202, 2025.

[34] C. Tantithamthavorn, J. Cito, H. Hemmati, and S. Chandra, “Explainable
AI for SE: Challenges and Future Directions,” IEEE Software, vol. 40,
no. 3, pp. 29–33, 2023.

[35] A. Ramı́rez, M. Berrios, J. Romero, and R. Feldt, “Towards Explainable
Test Case Prioritisation with Learning-to-Rank Models,” in AIST@ICST.
Dublin, Ireland: IEEE, 2023, pp. 66–69.

[36] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. C. Briand, “Scalable
and accurate test case prioritization in continuous integration contexts,”
IEEE Trans. Software Eng., vol. 49, no. 4, pp. 1615–1639, 2023.

[37] G. Grano, F. Palomba, and H. Gall, “Lightweight Assessment of
Test-Case Effectiveness Using Source-Code-Quality Indicators,” IEEE
Transactions on Software Engineering, vol. 47, no. 4, pp. 758–774, 2021.

[38] A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in open source software development—replication package,” 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6563549

[39] “Jacoco website,” https://www.eclemma.org/jacoco/, accessed: 2024-11-
25.

[40] “Ck tool on github,” https://github.com/mauricioaniche/ck, accessed:
2024-11-25.

[41] “tree-sitter website,” https://tree-sitter.github.io/tree-sitter/, accessed:
2024-11-25.

[42] Anonymous. (2024) Cleaned data and notebooks for the paper “Towards
refined code coverage: A new predictive problem in software testing”’.
[Online]. Available: https://anonymous.4open.science/r/understanding-
covered-code-4950

[43] P. Biecek and T. Burzykowski, Explanatory Model Analysis: Explore,
Explain, and Examine Predictive Models. Chapman and Hall/CRC,
2021.

[44] Q. Zhu, A. Zaidman, and A. Panichella, “How to kill them all: An
exploratory study on the impact of code observability on mutation
testing,” J. Syst. Softw., vol. 173, p. 110864, 2021.


