
Test Amplification
For and With Developers

Test Amplification
For and With Developers

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op maandag 8 juli 2024 om 17:30 uur

door

Carolin Elisabeth BRANDT

Master of Science in Software Engineering,
Universität Augsburg, Technische Universität München, en

Ludwig-Maximilians-Universität München, Duitsland,
geboren te München, Duitsland.

Dit proefschrift is goedgekeurd door de

promotoren: Prof. dr. A.E. Zaidman, Prof. dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. A.E. Zaidman, Technische Universiteit Delft, promotor
Prof. dr. A. van Deursen, Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. B. Baudry, Universtité de Montréal
Prof. dr. A. Zeller, CISPA Helmholtz Center for Information Security

and Saarland University
Prof. dr. X. Devroey, University of Namur
Prof. dr. K. Langendoen, Technische Universiteit Delft
Dr. B. Külahçıoğlu Özkan, Technische Universiteit Delft
Prof. dr. ir. Fernando Kuipers, Technische Universiteit Delft, reservelid

The work in the thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

Keywords: Test Amplification, Developer-Centric Design, Software Testing

Printed by: ProefschriftMaken, https://www.proefschriftmaken.nl/

Cover: Carolin Brandt

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6366-886-6

An electronic version of this dissertation is available at
https://doi.org/10.4233/uuid:aedfd7b6-f9ae-4b76-9122-29e43995d36f.

https://www.proefschriftmaken.nl/
https://github.com/Inventitech/phd-thesis-template
https://doi.org/10.4233/uuid:aedfd7b6-f9ae-4b76-9122-29e43995d36f

v

Contents

Summary ix

Samenvatting xi

Acknowledgments xiii

1 Introduction 1

2 Developer-Centric Test Amplification: The Interplay Between Automatic
Generation and Human Exploration 13
2.1 Creating Developer-Centric Test Amplification. 17
2.2 Bringing Test Amplification to the Developer (IDE) 18

2.2.1 Developer-Centric Amplification With DSpot 20
2.2.2 Test Exploration Plugin TestCube 23

2.3 Study Design . 25
2.3.1 Preparation . 26
2.3.2 Interview Procedure . 27
2.3.3 Data Collection and Analysis. 27

2.4 Results . 28
2.4.1 Participants . 28
2.4.2 RQ1: What Are the Key Factors to Make Amplified Test Cases

Suited for Developer-Centric Test Amplification? 28
2.4.3 RQ2: What Are the Key Factors to Make Test Exploration Tools

Suited for Developer-Centric Test Amplification? 32
2.4.4 RQ3: What Information Do Developers Seek While Exploring Am-

plified Test Cases? . 35
2.4.5 RQ4: What Value Does Developer-Centric Test Amplification Bring

to Developers? . 37
2.5 Discussion and Recommendations . 38
2.6 Threats to Validity . 40
2.7 Related Work. 41

2.7.1 Understandability of Test Cases 41
2.7.2 Test Generation Tools Integrated in the IDE 43
2.7.3 Interactive Test Generation. 43

2.8 Conclusion and Future Work . 44

3 How Does This New Developer Test Fit In? A Visualization to Understand
Amplified Test Cases 45
3.1 Developer-Centric Test Amplification 48
3.2 The Test Impact Graph . 48

3.2.1 Method Nodes . 48

vi Contents

3.2.2 Call Edges . 49
3.2.3 Default Layout . 49
3.2.4 Design Rationale . 50
3.2.5 Implementation . 50

3.3 Think-Aloud Study . 51
3.3.1 Study Design . 51
3.3.2 Study Execution . 52
3.3.3 General Observations . 53

3.4 RQ1: Which Information Do Developers Seek From the TestImpactGraph? 53
3.4.1 What Does It Do? Understanding the Test Case 53
3.4.2 Should I Test This? Provide Scope of Where Code Is From 54
3.4.3 Who Tests This Already? Support Exploring Other Tests 55

3.5 RQ2: Which Features of the TestImpactGraph Help Developers Access
This Information? . 55
3.5.1 Code Nodes: As Close to the IDE as Possible 55
3.5.2 Default View: Provide Confidence to See Everything Relevant . . . 56
3.5.3 Where Was I? Providing and Keeping Context 56
3.5.4 Where Does This Connect? Clarifying Edges. 57

3.6 RQ3: What Observations Related to Test Coverage Arise When Inspecting
a Developer Test Through the TestImpactGraph?. 57
3.6.1 Should This Not Already Be Unit-Tested? Deep and Accidental

Coverage . 57
3.6.2 What Is Executed Here? Instruction Coverage Visualized Per Line . 58

3.7 Discussion . 59
3.7.1 Test Review . 59
3.7.2 Differential Code Coverage. 59
3.7.3 Refined Coverage Insights . 60
3.7.4 Relevance of Deep Coverage for Test Descriptions 60
3.7.5 Threats to Validity . 60

3.8 Related Work: Test Visualizations . 61
3.9 Conclusion and Future Work . 63

4 Shaken, Not Stirred. How Developers Like Their Amplified Tests 65
4.1 Developer-Centric Test Amplification 67
4.2 Automatic Post-Processing for developer-centric test amplification. 69

4.2.1 Prettifier module . 70
4.2.2 Descriptions for Amplified Tests 71

4.3 Open Source Contribution Study . 72
4.3.1 Repository Selection . 73
4.3.2 Running the Test Amplification 73
4.3.3 Manual Selection and Editing 73
4.3.4 Contributing Back the Tests . 74
4.3.5 Data Analysis . 74

Contents vii

4.4 Results . 75
4.4.1 Running the Test Amplification 75
4.4.2 RQ1.1: On which criteria do we select a candidate test to include

in the test suite? . 75
4.4.3 RQ1.2: Which manual edits do we perform to improve the tests

before submission? . 78
4.4.4 RQ2.1: Which changes are proposed during the pull request dis-

cussion? . 80
4.4.5 RQ2.2: What kind of information is requested by the maintainers

during the pull request discussion? 81
4.4.6 RQ2.3: How do the maintainers justify their judgment over the

amplified tests during the pull request discussion? 82
4.5 Discussion . 83

4.5.1 Guidelines for Developers to Select and Edit Amplified Tests 83
4.5.2 Relation to Existing Literature 85
4.5.3 Implications for Practitioners. 87
4.5.4 Implications for Researchers and Tool Designers 88
4.5.5 Threats to Validity . 89

4.6 Related Work. 90
4.7 Conclusion and Future Work . 91

5 When to Let the Developer Guide: Trade-offs Between Open and Guided
Test Amplification 93
5.1 Test Amplification . 96
5.2 User-Guided Test Amplification . 97
5.3 Evaluation . 98

5.3.1 Design Technical Case Study . 98
5.3.2 Results Technical Case Study. 99
5.3.3 Answer to RQ1: How effective does guided test amplification gen-

erate tests for targeted branches (compared to open test amplifica-
tion)?. 101

5.3.4 Design User Study . 101
5.3.5 Results User Study . 102
5.3.6 Answer to RQ2: How do developers perceive guided test amplifica-

tion (compared to open test amplification)? 105
5.3.7 Threats to Validity . 105

5.4 Discussion and Implications for Practitioners and Researchers 106
5.4.1 Implications for Practitioners. 107
5.4.2 Implications for Researchers . 108

5.5 Related Work. 108
5.5.1 Directed Test Generation . 108
5.5.2 Interactive Test Generation. 109

5.6 Conclusion and Future Work . 109

viii Contents

6 Mind the Gap: What Working With Developers on Fuzz Tests Taught Us
About Coverage Gaps 111
6.1 Fuzzing To Inspire Functional Tests . 113

6.1.1 Inspiration Through Fuzzing-based Tests. 113
6.1.2 Instantiation in the Mozilla Ecosystem 114

6.2 Proposing Inspirational Fuzzing-Based Tests To Developers 117
6.2.1 Study Design and Execution . 117
6.2.2 Developer Reactions . 118

6.3 Selecting Relevant Coverage Gaps . 119
6.4 Do Developers Think These Coverage Gaps Should Be Tested?. 120

6.4.1 Test Relevance of the Filtered Coverage Gaps 121
6.4.2 Different Ways to Address Coverage Gaps 123
6.4.3 Needs of Developers and How to Improve Our Approach 124

6.5 Discussion . 126
6.5.1 Implications for Practitioners. 126
6.5.2 Implications for Tool Builders and Developer Supporters 126
6.5.3 Implications for Researchers . 127
6.5.4 Threats to Validity . 127

6.6 Related Work. 128
6.7 Conclusion and Future Work . 129
6.8 Appendix: Fuzzing-Discovered Security Vulnerabilities at Mozilla 130

7 Conclusion 131
7.1 Revisiting Our Research Questions . 131
7.2 How to Design an Effective Collaboration Between Software Developers

and Automatic Test Amplification Tools 134
7.3 Implications . 135

7.3.1 Implications for Software Developers and Society 135
7.3.2 Implications for Tool Builders 136
7.3.3 Implications for Researchers . 136

7.4 Future Work . 137

Bibliography 141

Glossary 159

Curriculum Vitæ 161

List of Publications 163

ix

Summary

Developer testing has become an established practice in large software projects. The
developers working on the functionality of a project also write short, automated scripts
that check the behavior of their code. While the benefits of developer testing are widely
accepted, writing tests is still seen as tedious and time-consuming. Researchers are working
towards alleviating developer effort by automatically generating tests. One approach to
do this is test amplification, which modifies existing, manually written tests to create new
tests that improve the strength of the existing test suite. When trying to fully automatically
generate tests, test generation tools face the relevance problem and the oracle problem:
Which behavior of the system is worth testing and what is the expected output to check
for? The developer already needs to have an understanding of these two aspects to write
the code under test. We propose to leverage this knowledge of the developer to improve
the test amplification process. Conjecturing that a consciously designed interaction is
the key to an effective collaboration, we propose a developer-centric approach to test
amplification that uses a dedicated test exploration tool to communicate and collaborate
with the developer.

During the five design science studies in this thesis we investigate key factors for an
effective collaboration between software developers and test amplification tools. Starting
off, we explore what is important in the amplified tests and the test exploration tool. We
also study the information needs of the developer when inspecting amplified tests, and the
value test amplification can provide to the developer. We explore the use of a visualization
to convey the execution behavior and coverage impact of a test, and the impact of explicit
guidance towards a coverage target. By collecting feedback from open source maintainers
on amplified tests, we gather the types of changes developers can expect to make to
amplified tests. Through discussions with developers on partial, fuzzer-based tests that
target coverage gaps, we learn that not all coverage gaps are relevant to be closed or worth
the effort to close them.

Concluding this thesis, we formulate guidelines on how to design an effective collabora-
tion between software developers and test amplification tools. The insights we gained also
include guidelines for developers on how to examine and edit amplified tests. We learned
that developers can contribute valuable, hard-to-automate improvements to amplified tests
and call to focus on supporting the developers in their contributions over further focussing
on full automation. At the same time, we also observe the effort required from developers
to understand and complete partial tests, which can inhibit the use of our tools. Therefore,
managing the trade-off between perceived value and required effort should be central
during the design of an effective collaboration between software developers and automatic
generation.

xi

Samenvatting

Het schrijven en uitvoeren van testen door software ontwikkelaars wordt in de praktijk
vaak gebruikt tijdens het ontwikkelen en onderhouden van grote softwareprojecten. Dit
houdt in dat software ontwikkelaars tijdens het ontwikkelen van de software ook korte,
geautomiseerde scripts creëren die het gedrag van hun code controleren. De voordelen van
het testen door ontwikkelaars zijn breed geaccepteerd, maar het schrijven van tests wordt
nog steeds gezien als moeizaam en tijdrovend. Met deze wetenschap proberen onderzoekers
het testen van software door ontwikkelaars makkelijker enminder tijdrovend temaken door
automatisch testen te genereren. Een specifieke manier om dit te doen heet test amplificatie:
bestaande, handmatige geschreven testen worden op een systematische manier veranderd
om zo te leiden tot nieuwe testen die de bestaande test suite verbeteren. Echter, bij het
automatisch genereren van testen worden test generatie tools geconfronteerd met het
relevantie probleem enerzijds, en het orakel probleem anderzijds. Dit probleem vertaalt
zich naar: welk gedrag van mijn systeem is de moeite waard om te testen en wat is het
verwachte gedrag van het systeem dat we testen? De ontwikkelaar moet begrip hebben van
beide aspecten om de desbetreffende code te schrijven. Wij stellen voor om de kennis van de
software ontwikkelaar te gebruiken om het test amplificatie proces te verbeteren. Daarbij
veronderstellen we dat een bewust ontworpen interactie tussen de software ontwikkelaar
en de test amplificatie tool de sleutel is voor het genereren en voorstellen van goede
geamplificeerde testen. Binnen deze visie stellen we een ontwikkelaar-centrische aanpak
van test amplificatie voor die gebruik maakt van een een test exploratie tool om met de
ontwikkelaar te communiceren en samen te werken.

Middels vijf studies die het design science paradigma onderschrijven bestuderen we
in dit proefschrift sleutelfactoren voor een effectieve samenwerking tussen software ont-
wikkelaars en test amplificatie tools. We onderzoeken eerst de belangrijke aspecten van
de geamplificeerde tests en de test exploratie tool. We bestuderen de informatiebehoef-
ten van de ontwikkelaar bij het inspecteren van geamplificeerde tests, en de waarde die
test amplificatie kan bieden aan de ontwikkelaar. We verkennen de toepassing van een
visualisatie om het uitvoeringsgedrag en de dekkingsimpact van een test over te brengen.
We bekijken ook wat de invloed is van de software ontwikkelaar die het test amplificatie
proces expliciet richting een bepaald stuk functionaliteit (en dus code) duwt. We analyseren
bovendien de feedback van open source onderhouders op geamplificeerde tests, verzamelen
we de soorten bewerkingen die ontwikkelaars kunnen verwachten te maken wanneer zij
met geamplificeerde tests werken. Op de basis van gesprekken met ontwikkelaars over
gedeeltelijke, fuzzer-gebaseerde tests die coverage gaps aanpakken, leren we dat niet alle
coverage gaps relevant zijn om te adresseren en te dichten.

We ronden dit proefschrift af met richtlijnen over hoe je een effectieve samenwerking
tussen software ontwikkelaars en test amplification tools kan vormgeven. De inzichten die
we hebben opgebouwd bevatten ook richtlijnen voor ontwikkelaars die geamplificeerde
tests beoordelen en bewerken. We hebben geleerd dat ontwikkelaars waardevolle, moeilijk

xii Samenvatting

te automatiseren verbeteringen aan geamplificeerde tests aanbrengen. Daarom roepen
we op om meer aandacht te besteden aan het ondersteunen van de ontwikkelaar bij deze
contributies in plaats van verder aandacht te besteden aan volledige automatisering. Tege-
lijkertijd observeren we ook de grote inspanning die van de ontwikkelaar wordt gevraagd
om gedeeltelijke tests te begrijpen en te voltooien, wat het gebruik van onze tools kan
bemoeilijken. Bijgevolg moet het beheren van de afweging tussen de waargenomen waarde
en de vereiste inspanning centraal staan bij het ontwerp van een effectieve samenwerking
tussen software ontwikkelaars en automatische generatie.

xiii

Acknowledgments

There are many wonderful people that I had the delight to meet, work, and interact with
throughout my PhD. In this section, I’d like to express my gratitude and acknowledge the
contributions they made to this thesis, me and my life .

Andy, it is difficult for me to put into words how immensely grateful I am for your
continuous support and advice during the last years. You succeeded sowell in constructively
nudging me onto the right path, while letting me maintain my independent drive. I am
especially thankful for your constant availability and reliability. You make time to be there
when it is needed, and I learned that I can count on what you say. I particularly enjoy our
conversations, in-depth reflective and thoughtful exchanges not only about our research,
but to my delight also about the academic world beyond.

Arie, thank you for your spot-on advice throughout these years and giving me the
confident trust and freedom to do awesome research. Beyond that, thank you for fostering
an amazing research group of wonderful people to work amongst.

I want to thank my committee members, Benoit Baudry, Andreas Zeller, Xavier Devroey,
Koen Langedoen, and Burcu Özkan for the careful reading of my thesis manuscript and
the constructive feedback on it.

Imara, Mark, and Andra, thank you for being my best friends here in Delft. I thoroughly
enjoy us hanging out, be it shooting arrows and discussing minds, deliberating theories
and life, or eating Ramen and enjoying dance shows. With each of you I have someone
who I can openly speak to about everything and who understands and feels with me my
thoughts and struggles .

Ali, Amir, Baris, Mark, and Abir, I am grateful for you as my ever-supportive officemates
and closest colleagues during this time. It is awesome to discuss your and my research
ideas with each other, and that you showed me how it is to work together and collaborate
with bright minds.

I want to thank all my fellow PhD Students of SERG for creating a cheerful and
supportive environment for everyone around. I especially cherish that I was able to
become closer friends with several of you over conference travels and other opportunities
for personal conversations. Andra, thank you for our daily catchups and with that the
opportunities to get our minds working again. Thank you all for showing me the many
facets that doing a PhD and life beyond it have .

Xavier, Maliheh, Mairieli and June, I am thankful for our conversations that were both
uplifting and thought-provoking. You made me think, reflect, and grow my understanding
of our world. Mauricio, Enrique and Ayushi, thank you for sparking my love for research
methods and theories.

Casper, Danyao, Khalid, Nienke, Wessel, George and Swastik, thank you for the fantastic
time I got to have through supervising you and collaborating together to conduct awesome
research.

xiv Acknowledgments

I am grateful to Minaksie and Kim for the joy and positivity they brought to our office
and for always being there when we needed to work things out with the university.

Alberto, thank you for the chance to work together on such an awesome collaboration,
for connecting me with Mozilla, and for teaching me new approaches to look at research in
our field. Marco, Christian and Jason, I am grateful for the glimpse you let me have into the
software and fuzzing world at Mozilla, and all the support you gave me during our project.

Thank you Walid and the whole MAST group for the warm welcome in Hamburg,
showing me new facets of software engineering, academia and what university life can
look like. Especially Abir, thank you for being a friend during this time and letting us
explore collaborating together.

My thanks go out to the NWO for funding my position, allowing us wonderful freedom
in conducting our research. I want to thank the Zonta organization and their Women in
Technology Scholarship that allowed me to visit the University of Hamburg for an extended
time and to broaden my horizons in research and life. I also want to thank everyone who
participated in my studies, allowing me to bring out the diversity and humanity in using
automatic test amplification.

I am grateful to the European Union for making it so simple to move to and live in
another country, letting me experience a different culture and new perspectives on life in
the same safety as back home. I am also grateful for our society’s development throughout
the pandemic, that we learned how to thrive with limited in-person social interaction.

Dank je wel Ron voor de ondersteuning bij het afmaken van de cover. Samen met Anita,
bedankt voor een tweede familie dicht bij huis.

Dominik, Steffi und Miri, danke, dass wir Freunde geblieben sind und auch über den
großen Abstand und die Pandemie immer wieder quatschen konnten.

Mama, Papa, Viki und Julia, ich bin dankbar, dass ich immer auf eure Unterstützung
bauen kann und für die vielen Anstöße, doch mehr Forschung und Sport zu machen .

Taico, thank you for your neverending support, open ear for everything I want to talk
about, being there through highs and lows, and always being up for in-depth discussions
about life .

Caro

1

1

1
Introduction

Elena and her software development team are struggling with the quality
of their project. Changes to the code often break existing functionality, and
finding the root causes for these regressions is difficult. They know that
more tests can help them prevent these errors or solve them quicker, but
management is pressing them to deliver new features and gives little time for
long-term quality improvement. Elena has heard of automatic test generation
tools that can help them create more tests. She tries out such a tool, which
promises to deliver tests that can detect many errors. When looking at the
singular tests, she is not quite sure how they improve her test suite, but she
adds them anyways, trusting the tool’s promise. When one of the test fails
after a change, she struggles to localize the underlying fault causing the failure
because it is hard to understand the tested scenario. While discussing with
her colleagues, they discover that the test is checking unimportant behavior
which can change without impacting the users of their software. They decide
to delete the generated test, and Elena is left with the feeling that the test
generation was not helpful for their team.

I n the established software development process, software testing is one of the pillars
ensuring the quality of the produced software [1]. Software tests come in a variety of

forms: from manual tests executed by humans which test the interaction with a system,
over system tests which check the interaction between all components, down to automated
unit tests written by developers to check the behavior of singular components [2]. In
general, tests consist of an input and an expected output. The input can be defined together
with instructions on how to interact with the system under test. These instructions are
executed and the resulting actual output from the system under test is compared to the
expected output. If the actual output matches the expected output, the test passes, if it
does not match, the test fails. Depending on their form, tests can be used for a variety
of purposes. For example, manual tests can be used to check the usability of a whole
system and whether it fulfills the agreed upon requirements. Automatically executable
system or unit tests can be used as regression tests to regularly check that the important
behaviors of a software system are not altered [3, 4]. Randomized inputs can be used to

1

2 1 Introduction

check the robustness of a system against crashes or exploits, a technique called fuzzing [5].
While it is widely known that we need strong software testing to produce high quality
software, developers perceive creating or writing tests is seen as a tedious, time-consuming
activity [6–9].

Automatic Test Generation
To lighten the developers’ effort, software engineering researchers work on automating
the generation of software tests. Just as there is diversity in the form and purposes of tests,
there is a plethora of different automatic test generation approaches [10–15]. Search-based
approaches use evolutionary algorithms to generate optimal test suites with regards to
a given objective function, e.g., maximum coverage of the code under test with minimal
length and number of test cases [16, 17]. Test amplification leverages existing manually
written tests and strengthens them by mutating the input and setup and adding new
assertions to increase the coverage of the test suite [13], or detect behavioral differences
created by code changes [18]. Recently, machine learning and especially large language
models have also been applied to generate tests [19] or to boost more traditional test
generation approaches [15]. The state-of-the-art test generation tools are effective in
detecting regressions [20], finding [21] and reproducing crashes [22, 23], exposing under-
tested scenarios [21], and generating test data [24].

However, there are two challenges that are consistently difficult to solve for fully
automatic test generation approaches:

• What behavior is relevant to test? (Relevance Problem)

• What is the correct outcome that the test should check for? (Oracle Problem)

In software engineering, developers aim to create a working software product with limited
resources such as time and budget. This means that exhaustive testing of all possible
inputs is not feasible, and developers need to prioritize which behavior to test [2]. Even if
automated tools can generate tests for all inputs, in a regression testing scenario not all
behaviors that the system exhibits are intended by the developers and necessary to preserve.
In this situation, a test that fails upon irrelevant behavioral changes would unnecessarily
alarm the developers, like in our initial story about Elena. We call this the relevance problem
of test generation, relating to what input scenarios should be tested. The second challenge
is the oracle problem [25, 26]. For each test, we need to know the intended behavior of the
system under test to determine the expected output that the actual output is compared
to. This is a long-standing concern in software testing [25], which has been addressed in
many ways. One approach is to use implicit oracles, like the absence of crashes during
fuzzing [5], deriving test oracles from known relations between input and output [27], or
by relying on a formal specification of the system under test [25].

Generating Tests For and With Developers
Both the relevance and the oracle problem require a deeper understanding of the intent
behind the software under test. To automatically address them we would have to analyze
requirements and design documents. However, this neglects a competent resource that

1

3

already had to understand the requirements and design of the software: the software
developer. To develop software, developers need to make themselves familiar with the
goals that their code is supposed to fulfill [28]. This means software developers are a
valuable resource when it comes to understanding the relevance of the behavior of
the software under test and the expected outcome of a test. Our idea for this thesis is to
explore howwe can leverage this resource to improve automatic test generation approaches.
If automatic test generation tools ask and learn from developers which scenarios to test
and what the intended behavior is, would this improve the tests we can generate?

A central obstacle to incorporating the developer into automatic test generation pro-
cesses is the lack of usability and developer-perceived usefulness of the current test gener-
ation tools. These tools are rather difficult to adopt in day-to-day software engineering,
due to several challenges limiting the understandability of the generated tests. These chal-
lenges include, for example, readability [29, 30], meaningful names [31–33], and documenta-
tion [34–36]. This can lead to the generated tests being stored separately from the manually
written tests, e.g., when the tests are regenerated after the software changed [21, 37]. We
conjecture that, for the developer to be willing to invest effort in helping our auto-
matic test generation tools, the developers need to feel like using the tools is worth
their time and effort. To provide this value to the developer, we declare as the goal of
this thesis towork towards generated tests that software developers include in their
maintained test suite next to their manually written tests. The maintained test suite
refers to the xUnit tests that developers write and maintain as part of the regression test
suite of a software project [2–4]. The acceptance of a generated test into the developers’
test suite is our form of a test adequacy metric, as it indicates that the developer perceives
the test as relevant and useful. Such developer-accepted tests are also valuable for use cases
beyond checking the behavior of code, especially for use cases that require the developer
to understand the behavior and intent of the test. For example, the tests can serve as a
form of executable documentation [38–40] and help developers localize the underlying
fault when a test fails [35, 41].

The test generation approach called test amplification can help us with generating
tests that are easier to understand for developers. Test amplification makes automatic
changes to existing, manually written tests to generate new tests that are complementary
to the existing test suite [42]. The benefit we expect from test amplification is that un-
derstanding the generated tests is easier because they are similar to the manually written
tests which the developer is already familiar with. This is why we choose to use test
amplification as the approach to generate tests in this thesis. In the following section, we
give a more detailed introduction to test amplification and further reasons why we use this
approach and the term amplification in this thesis.

Putting together our idea of leveraging the developers’ insight, generating useful tests
for developers and employing test amplification leads to the overarching vision for this
thesis (Figure 1.1): We want to generate amplified tests for developers, tests that
are useful and valuable for them. This enables us to generate amplified tests with
developers, leveraging their knowledge to address the relevance problem and the oracle
problem. In turn, this enables us to generate better amplified tests for developers
again.

1

4 1 Introduction

Figure 1.1: The overarching vision for this thesis.

Test Generation Through Test Amplification
In this section, we introduce the approach of test amplification and explain why we choose
to use this approach throughout the thesis.

Following the definition by Danglot et al., test amplification summarizes approaches
that leverage knowledge contained in existing test suites to generate new tests that improve
these test suites with regards to an engineering goal [42]. The existing knowledge that
is leveraged could be existing test inputs or setups. The approach generating the new
or improved tests could add more assertions to strengthen the fault detection capability
or modify the test execution environment to check for more unexpected behavior with
the existing tests. Test amplification always targets to improve an engineering goal, such
as improving coverage of the code under test, improving mutation score or uncovering
behavioral changes.

The specific test amplification approach we build upon is designed by Danglot et al. [13],
and implemented for Java in their tool DSpot.1 It amplifies JUnit tests and works as shown
in Figure 1.2. For the amplification, we choose an original test from the existing test suite.
Then, DSpot removes all current assertions and mutates the input and setup phase of the
test. These mutations could be modifying literal values or replacing them with random
ones, removing method calls or adding new method calls to the objects under test. Then,
DSpot generates new assertions to fit the new behavior of the mutated test. Here, the
behavior of the system under test is taken as the oracle, i.e., the expected values of the
assertions are chosen so that the test passes when it is executed. Finally, the new test is
compared to the existing test suite. If it improves the test suite according to the chosen
adequacy metric, e.g., structural coverage or mutation score, then it is kept and returned as
an amplified test.

For this thesis, we choose to use test amplification to generate tests because the resulting
tests are similar to the original tests. We assume that a developer familiar with the test
suite will therefore more easily understand and accept amplified tests. This is also the
central difference to, and potential advantage over, the widely studied and powerful search-
based test generation of, for example, EvoSuite [10]. A second advantage is that test

1https://github.com/STAMP-project/dspot

https://github.com/STAMP-project/dspot

1

5

Evaluation

Original
Test Case

Remove
Assertions

Mutate
Input

Generate
Assertion

.

Select
Test Cases

Amplified
Test Cases

Figure 1.2: Overview of test amplification with DSpot.

amplification supports integration tests out-of-the-box. Integration tests are tests that
involve more than one class under test. A large part of manually written xUnit tests
are integration tests [43, 44]. The majority of the previous developer-involved studies
regarding automatic unit test generation are conducted with EvoSuite [45–47] and do
not consider test amplification approaches. Existing reports and efforts to improve test
amplification show that it suffers from similar problems as those observed with EvoSuite,
such as complex configuration and long wait times [21], as well as lacking documentation
explaining the generated test [36].

We prefer and use the term test amplification because we primarily use a modification of
Danglot et al.’s approach for our studies. It also emphasizes the idea of improving an existing
test suite. The use case for test amplification is a developer or team wanting to improve
their existing test suite. This is why the value of an amplified test is always measured in
comparison to this test suite, answering the question: “How would my test suite improve if
I add this test to it?” The evaluations of other automatic test generation techniques typically
use a different scope to judge the adequacy of their tests, e.g., minimizing the size of a
whole generated test suite while maximizing mutation score [17], or finding vulnerabilities
in software systems [48].

Research Goal
The overall theme motivating this thesis is to enable test amplification to work for and
together with software developers. Based on the existing developer experiences with test
generation tools reported in literature, we conjecture that the crucial component towards
success is the design of the collaboration between the software developer and the automatic
test amplification tool. This encompasses the intended interaction workflow of these two,
the test amplification process itself and the user interface facilitating the communication
between developer and tool. To illustrate the potential impact of a thoughtful design of
this collaboration, consider the following example of developer Elena working with the
developer-centric test amplification tool and process we develop throughout this thesis:

Elena, a software developer, wants to expand the test suite of the project she
is working. The test suite should cover more functionality and allow her and
her team to be more confident that they are not breaking important behavior
when they make changes to the code. As her management is constantly asking
for new features, she is pressed on time and decides to use an automatic test
amplification tool to improve her project’s test suite. From her integrated
development environment (IDE), she starts the test amplification. The tool

1

6 1 Introduction

generates several new test cases for her. Elena inspects the test cases one by
one directly from the test exploration tool integrated into her IDE. Through a
visualization, she observes the tests’ behavior and their new coverage contri-
bution to judge which tests to include in the test suite. When she decides to
keep a test, she takes a look at the generated code and does some adjustment
to make the test easier to understand for her colleagues and fit better to their
project’s style and quality. After adding several new tests into the test suite of
her project, she commits them all and prepares a merge request that describes
the improvements to the test suite.

Compared to the initial example, Elena’s experience is much more positive. To create
this kind of experience, we need to understand what is needed to design such a collaboration
between developer and test amplification tool. Therefore, the overarching research question
this thesis addresses is:

How do we design an effective collaboration between software developers and
automatic test amplification tools?

To address this question, we adopt an engineering research approach, also called
design science [49–51]. In engineering research, we take a proactive approach to design
innovative artifacts that improve the software engineering process. We iterate between two
phases: construction and evaluation. In the construction phase, we sketch and implement
prototypes of our innovative artifacts based on existing knowledge and theories, as well as
the needs and problems of the software engineering processes that we aim to improve. In
the evaluation phase, we rigorously examine these prototypes to gain novel insights into
how they affect the software engineering process and learn how to improve our and similar
designs. Each chapter of this thesis, and the publications they are based on, follows these
two phases: Constructing a design and a prototype, and then evaluating it in a study with
software developers to gain insights into the strengths of the design and how to improve it.

Research Outline
Based on the shortcomings and recommendations discussed in the existing user studies
involving test amplification and other automatic test generation methods, we develop an
initial prototype of a tool that facilitates the interaction between a test amplification tool
and a software developer (Chapter 2). Figure 1.3 gives an overview of the developer-centric
test amplification workflow we propose, where a developer interacts with a so-called
test exploration tool. The tool is embedded into the developer’s integrated development
environment (IDE) and takes care of configuring and calling the test amplification tool
(3⃝ in Figure 1.3). The test exploration tool then presents the returned amplified tests
to the developer, together with information on how each test improves the coverage of
the test suite (5⃝). The developer can then explore the different proposed tests and judge
which ones to add into their test suite (6⃝ and 7⃝). We implement this design in an IntelliJ
plugin called TestCube , which leverages the original test amplification tool DSpot for
Java, developed by Danglot et al. [13]. In Chapter 2 we evaluate our prototype TestCube
through semi-structured interviews with 16 software developers. This way, we explore

1

7

which aspects to focus on when developing the idea of developer-centric test amplification
further. The following chapters of the thesis each investigate one of these aspect in more
depth.

① Test ExplorationTool
Developer who
wants to improve start Test
their test suite ② Amplifications Test

• Amplification¥¥¥- Tool

Presents Tests and

Related information⑤ Returns④
Amplified Tests

⑥ E×pLodf• @ Test . . . { Executes
+ coverage

to @ •Judge Proposed
}
:: :

. . . Information
Test cases

• • •

Improves
Test Suite at Add Ignore

Integrate Selected •

Test cases into : : : Prev
.
Next

Manually Maintained . . .

Test suite

Figure 1.3: Overview of test amplification with the help of a test exploration tool.

Starting off, in Chapter 3 we develop and evaluate TestImpactGraph, a graph-based
visualization that shows the methods called during the execution of an amplified test,
including colored line highlights showing which lines are newly covered compared to the
existing test suite. The goal of the visualization is to communicate the behavior and the
coverage contribution of an amplified test, so that a developer can more effectively judge
whether to include the test in their test suite.

In Chapter 4, we characterize which types of changes developers make to amplified
tests before deciding to include them in their maintained test suite. For this, we first
resolve issues with the test amplification identified in the evaluation of Chapter 2. We
then generate amplified tests for popular open source projects, and propose them in 39
pull request to the maintainers of these open source projects. Based on our analysis of
the changes requested by the maintainers, together with our own preparations necessary
to obtain tests suited for pull requests, we formulate guidelines for developers. These
guidelines clarify which actions they can expect when selecting and editing amplified
tests before including them in their maintained test suites. Our central observation is that
several of these actions highly benefit from the developers’ expertise and familiarity with
the software under test. Two examples of such changes are merging tests with existing tests

1

8 1 Introduction

or providing meaningful documentation. This leads us to call for more focus on supporting
developers in understanding amplified tests, so they can contribute such changes.

In Chapter 5, we explore the idea of letting the developers actively guide the test
amplification towards the branches they want to cover, and study how this impacts the
process of developer-centric test amplification. Our user study reveals that active guidance
does help developers understand the amplified test, but that the guidance also poses new
expectations in terms of being able to cover any branch, and expectations of interactive
speed of the test amplification.

In Chapter 6, we divert from our prior approach and tooling for developer-centric
test amplification. Together with Mozilla, we explore leveraging their established fuzzing
tools to generate partial tests that, when completed by developers with a functional oracle,
can close coverage gaps in their code base. Based on the reactions towards proposed
fuzzing-based tests and discussions with the developers, we learn that the relevance to test
a coverage gap can vary widely. The developers’ intention to address the coverage gap
depends on the effort to create or complete a test, the expected likelihood for a bug and
how the gap is covered by other quality assurance techniques.

The research questions we address in each chapter of this thesis can be summarized as:

Research Questions For Each Chapter

Chapter 2 What factors are relevant to developers working with a developer-centric
test amplification tool?

Chapter 3 How should a visualization of the execution behavior and coverage impact
of an amplified test be designed to help software developers judge the
amplified test?

Chapter 4 What changes do developers make to amplified tests before incorporating
them into their maintained test suite?

Chapter 5 How does developer guidance towards a coverage target impact the
developer-centric test amplification process?

Chapter 6 What are developers’ reactions when proposing fuzzing-based tests that
would close coverage gaps after being completed with a functional oracle?

Research Methods
The methods applied in the research for this thesis are primarily qualitative and exploratory.
Throughout the different chapters we move between interviews and user studies in a lab-
like setting (Chapters 2, 3 and 5) and studies in the wild, where we observe the reactions of
developers to test amplification in their own software projects (Chapters 4 and 6). Through-
out the thesis we follow the design science research methodology [49, 50], iteratively
designing and evaluating prototypes of our test amplification approach or its components.
For the evaluation of our prototypes, we aim for rich and actionable insights about the
developers’ experience and needs when interacting with test amplification tools. These

1

9

are then the basis of our results, pointing towards future steps to improve the approach
and tools. Furthermore, test amplification is a relatively young approach that is not yet
established in the software developers’ toolbox. When the approach matures and becomes
more widely used in the future, quantitative comparisons in experiments with other test
creation approaches will become more applicable.

We applied the following methods in each of the chapters of this thesis:

Chapter 2 Semi-structured interviews with 16 developers while generating amplified
tests with our developer-centric test amplification prototype TestCube .

Chapter 3 Think-aloud study with 5 developers while exploring our visualization
prototype.

Chapter 4 Open source contribution study by submitting 39 pull requests with
amplified tests, 36 of which the maintainers reacted to. 19 pull requests
were accepted and 13 closed. Qualitative analysis of our manual pre-
processing and the maintainers’ change requests.

Chapter 5 Technical case study on two open source projects and user study with 12
participants applying both undirected and directed test amplification.

Chapter 6 Prototype study leading to 13 issue reports about tests, 7 of which re-
ceived reactions. In addition, chat conversations with 13 developers about
the relevance of closing certain coverage gaps. Qualitative analysis of
feedback comments to the issue reports and the conversations.

Open Science and Reproducibility
We strive to make all our research results available to the public, which is also a requirement
of the public Dutch funding agency NWO.2 The already published papers forming the
chapters of this thesis are available under green (Chapters 3 and 5) or gold open access
(Chapters 2 and 6). Furthermore, each paper is accompanied by a publicly persisted artifact
which provides the software we developed for our studies, raw data and analysis scripts to
enable readers to validate our claims. Table 1.1 provides links to all publications and their
artifacts. Research ethics and data protection were a central concern when we involved
developers in research studies. For our studies with active human participants we sought
approval from the human research ethics board of the TU Delft. To minimize risks and
respect the rights of the participants we limited the collection of personal data to strictly
necessary data and asked for informed consent.

2https://www.nwo.nl/en/open-science

1

10 1 Introduction

Chapter Open
Access

Publication DOI Artifact Link

Chapter 2 Gold https://doi.org/10.1007/
s10664-021-10094-2

https://zenodo.org/doi/10.
5281/zenodo.5254869

Chapter 3 Green https://doi.org/10.1109/
VISSOFT55257.2022.00011

https://zenodo.org/doi/10.
5281/zenodo.4971422

Chapter 4 Green https://doi.org/10.1109/TSE.
2024.3381015

https://zenodo.org/doi/10.
5281/zenodo.7034924

Chapter 5 Green https://doi.org/10.1109/
SCAM59687.2023.00032

https://zenodo.org/doi/10.
5281/zenodo.8074647

Chapter 6 Gold https://doi.org/10.1145/
3639477.3639721

https://zenodo.org/doi/10.
5281/zenodo.10470823

Table 1.1: The open access status, publication links and persisted artifacts of the papers forming the chapters of
this thesis.

Contributions
The research described in this thesis brings the following contributions:

1. Design of the novel method of developer-centric test amplification, where the devel-
oper can explore and judge proposed amplified tests from within their integrated
development environment. (Chapter 2)

2. A qualitative interview study evaluating developer-centric test amplification, leading
to insights such as the need to actively design the communication between developer
and test amplification tool, as well as the importance of understandability and
relevance of the test case to the developer. (Chapter 2)

3. Design of a graph-based visualization of the execution and coverage impact of an
amplified test case. (Chapter 3)

4. Think-aloud evaluation of the visualization, revealing the information developers
seek from such a visualization, as well as new viewpoints on tests enabled by it such
as recognizing direct vs. deep coverage and the wish to see tests that cover the same
code. (Chapter 3)

5. Open-source contribution study on the changes made to amplified test cases before
including them in the test suite, leading to guidelines on what developers can expect
as selection and editing tasks when working with amplified tests. (Chapter 4)

6. Design of directed test amplification, where the developer can guide the test amplifi-
cation process towards a target branch. (Chapter 5)

7. Technical case study and user study comparing directed and undirected test amplifi-
cation, eliciting tradeoffs like understandability (better for directed) or fulfillment of
user expectations (better for undirected). (Chapter 5)

https://doi.org/10.1007/s10664-021-10094-2
https://doi.org/10.1007/s10664-021-10094-2
https://zenodo.org/doi/10.5281/zenodo.5254869
https://zenodo.org/doi/10.5281/zenodo.5254869
https://doi.org/10.1109/VISSOFT55257.2022.00011
https://doi.org/10.1109/VISSOFT55257.2022.00011
https://zenodo.org/doi/10.5281/zenodo.4971422
https://zenodo.org/doi/10.5281/zenodo.4971422
https://doi.org/10.1109/TSE.2024.3381015
https://doi.org/10.1109/TSE.2024.3381015
https://zenodo.org/doi/10.5281/zenodo.7034924
https://zenodo.org/doi/10.5281/zenodo.7034924
https://doi.org/10.1109/SCAM59687.2023.00032
https://doi.org/10.1109/SCAM59687.2023.00032
https://zenodo.org/doi/10.5281/zenodo.8074647
https://zenodo.org/doi/10.5281/zenodo.8074647
https://doi.org/10.1145/3639477.3639721
https://doi.org/10.1145/3639477.3639721
https://zenodo.org/doi/10.5281/zenodo.10470823
https://zenodo.org/doi/10.5281/zenodo.10470823

1

11

8. Design of a prototype to generate partial tests for uncovered code with fuzzing and
proposing them in bug reports to developers. (Chapter 6)

9. Two studies on the reactions of developers to proposed fuzzing-based tests, revealing
varying relevance of coverage gaps to be closed and the effort required to understand
and complete partial tests. (Chapter 6)

10. Improvements to the test suites of various open source projects through tests con-
tributed in pull requests or through proposals in issue reports. (Chapters 4 and 6)

11. TestCube : Developer-centric test amplification plugin for the IntelliJ IDE, support-
ing open and guided test amplification. (Chapters 2 and 5)

12. Improvements to the previously developed DSpot test amplification tool [13]:
developer-centric amplified tests, directed test amplification, descriptions to accom-
pany the amplified tests. (Chapters 2, 4 and 5)

Thesis Structure
The remainder of this thesis is presented portfolio-style. This means that the next five
chapters primarily follow the five publications (one of which is still under revision) that the
thesis is based upon. They are self-contained and can be read independently. The following
publications were the basis for Chapters 2 to 6:

• Chapter 2: Carolin Brandt and Andy Zaidman. Developer-centric test amplification.
Empir. Softw. Eng., 27(4):96, 2022

• Chapter 3: Carolin Brandt and Andy Zaidman. How does this new developer test
fit in? A visualization to understand amplified test cases. In Working Conference on

Software Visualization (VISSOFT), pages 17–28. IEEE, 2022

• Chapter 4: Carolin Brandt, Ali Khatami, Mairieli Wessel, and Andy Zaidman. Shaken,
not stirred. How developers like their amplified tests. IEEE Transactions on Software

Engineering, 50(5):1264–1280, 2024

• Chapter 5: Carolin Brandt, Danyao Wang, and Andy Zaidman. When to let the
developer guide: Trade-offs between open and guided test amplification. In IEEE

International Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 231–241. IEEE, 2023

• Chapter 6: Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy
Zaidman, and Alberto Bacchelli. Mind the gap: What working with developers on
fuzz tests taught us about coverage gaps. In IEEE/ACM International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP). ACM, 2024

The final chapter of this thesis, Chapter 7, summarizes and connects the findings from the
chapters and discusses future work.

2

13

2
Developer-Centric
Test Amplification:

The Interplay Between
Automatic Generation

and Human Exploration

Automatically generating test cases for software has been an active research topic for many

years. While current tools can generate powerful regression or crash-reproducing test cases,

these are often kept separately from the maintained test suite. In this chapter, we leverage the

developer’s familiarity with test cases amplified from existing, manually written developer

tests. Starting from issues reported by developers in previous studies, we investigate what

aspects are important to design a developer-centric test amplification approach, that provides

test cases that are taken over by developers into their test suite. We conduct 16 semi-structured

interviews with software developers supported by our prototypical designs of a developer-

centric test amplification approach and a corresponding test exploration tool. We extend the

test amplification tool DSpot, generating test cases that are easier to understand. Our IntelliJ

plugin TestCube empowers developers to explore amplified test cases from their familiar

environment. From our interviews, we gather 52 observations that we summarize into 23
result categories and give two key recommendations on how future tool designers can make

their tools better suited for developer-centric test amplification.

This chapter is based on C. Brandt and A. Zaidman. Developer-Centric Test Amplification, Empirical Software

Engineering, 2022 [52].

2

14 2 Developer-Centric Test Amplification

T esting is an important [1], but time-consuming activity in software projects [6–8].
Automatic test generation aims to alleviate this effort by reducing the time developers

spend on writing test cases. The software engineering community has created a plethora of
powerful tools, that can automatically generate JUnit test cases for software projects written
in Java. For example, a widely known tool is EvoSuite [10], which generates test cases
from scratch using search-based algorithms. It starts from a group of randomly generated
test cases and optimizes them by mutating their code and combining them with each other.
This chapter focuses on test amplification, a technique that automatically generates new
test cases by adapting existing, manually written test cases [42]. The state-of-the-art test
amplification tool DSpot [13] mutates the setup phase of manually written test cases and
generates new assertions to test previously untested scenarios. For both EvoSuite and
DSpot, studies have shown that the tools are effective in generating or extending test suites
to reach a high structural coverage and mutation score [10, 13, 47, 57].

Automatic test generation is, for example, used to detect regressions [20], reproduce
crashes [22, 23], uncover undertested scenarios [21] and generate test data [24]. For these
use cases, it is often sufficient to keep the generated test cases separate from the manually
written and maintained test suite [21, 37]. This separation is reinforced by several hard-to-
solve challenges that limit the understandability of the automatically generated tests, such
as their readability [29, 30] or generating meaningful names [31, 32], or documentation [34–
36].

The amplified test cases created by DSpot are closely based on manually written ones.
This opens up the chance to generate test cases that are easier to understand by developers,
as they are likely familiar with the original test case, which the amplified test case is based
on. In this chapter, we want to leverage this aspect. We take a look at generating amplified
test cases that developers can take over into the manually maintained test suite as if they
would have written them themselves. To describe this kind of test generation we use the
term developer-centric, as the developer accepting the test case is central for this kind of
test generation:

Test amplification is developer-centric if it aims at generating test cases that
are accepted by the developer and taken over into the manually maintained
test suite.

Generated test cases that are accepted by developers and are part of the maintained
test suite also fulfill several further typical uses for developer tests. For example, as a form
of executable documentation [39, 40, 58], or to locate the fault that causes a failing test by
understanding the test in question [35].

To provide amplified test cases that developers take over into their test suite, the
interaction of the developer with the test amplification tool in which they review the
proposed amplified test cases is critical. In past projects, users of DSpot reported that the
tool was complex to configure and they had to wait long for the tool to finish and for
them to see results [21]. There is little support that guides developers through the list
of generated test cases so they can effectively judge whether to keep or discard a newly
amplified test case. To address these issues and realize developer-centric test amplification,
we embed the test amplification tool in a so-called test exploration tool:

2

15

A test exploration tool forms the interaction layer between the developer and
the test amplification tool. It lets the developer start the test amplification tool,
and later explore and inspect the different amplified test cases.

To illustrate how a developer would use a developer-centric test amplification approach
with a test exploration tool, we introduce an exemplary use case, which is also illustrated
in Figure 1.3:

Hannah, a software developer, wants to expand the test suite of the in-
dustrial project she is working on to cover more functionality and give her
confidence that they are not breaking important behavior when changing
something. As her management is constantly asking for new features, she
is pressed on time and decides to use an automatic test amplification tool to
improve her project’s test suite. From her integrated development environment
(IDE), she starts the test amplification. The tool generates several new test
cases for her and notifies her that it is finished. Hannah inspects the test cases
one by one directly from the test exploration tool integrated into her IDE. The
exploration tool shows her the code of each new test case and where in the
production code new instructions are covered. Hannah browses through the
new test cases and if she is happy with any test case, she adds it to the test
suite with one click of a button. After exploring all proposed test cases, she
commits her changes and can lean back with the confidence of a better tested
system.

In this chapter, we investigate how we should design a developer-centric test ampli-
fication approach to be successful with developers. As automatic test amplification is
not widely used and to prevent re-studying the already known issues in current tools,
we develop prototypes of a developer-centric test amplification approach and a corre-
sponding test exploration tool. To motivate the design choices we take for our prototypes,
we derive four design intentions from the test generation literature and the use case we
propose for developer-centric test amplification. Based on these intentions we revise the
test amplification process of DSpot to generate shorter, easier to understand test cases. Our
corresponding IntelliJ plugin TestCube lets the developer generate and explore test cases
right from their integrated development environment (IDE).

We conduct a qualitative study to explore which aspects of our prototypes are successful
in supporting developer-centric test amplification and uncover further aspects that should
be addressed to realize it.

In previous studies, developers using EvoSuite were “concerned about the readability
of generated unit tests, the generated input data, and the generated assertions” [45], while
DSpot users found it difficult to understand the generated test cases [21]. Stemming from
these observations, we investigate in our first research question what developers find
important in the code and behavior of an amplified test case. The answers to this question
give guidance on what factors in amplified test cases are relevant for developers to include
the test cases in their maintained test suite.

2

16 2 Developer-Centric Test Amplification

Research Question 1

What are the key factors to make amplified test cases suited for developer-centric test
amplification?

In our second research question, we explore how test exploration tools should be
designed to support developer-centric test amplification.

Research Question 2

What are the key factors to make test exploration tools suited for developer-centric
test amplification?

A powerful capability of such test exploration tools is to provide the developer with
information beyond the test code itself. We already know from test review that developers
are interested in understanding the code under test, as well as knowing the code coverage
of test cases [59]. To deepen our insights into what information test exploration tools
should make accessible to developers, we pose our third research question.

Research Question 3

What information do developers seek while exploring amplified test cases?

Creating a great tool alone is not enough for developers to appreciate using it. We also
need to convey the value our tool brings to them. Therefore our fourth research question
asks what value developers can gain from using developer-centric test amplification. With
the answers to this question, future tool creators know which benefits they can focus on
when they seek to convince users to start or keep using their tool.

Research Question 4

What value does developer-centric test amplification bring to developers?

To answer these research questions, we conduct semi-structured interviews with 16
software developers from varied backgrounds. The participants tried out our prototypes
and provided us with rich insights on their impressions of our prototypes and how we
could improve them to better fit their needs. We group 52 recurring observations from the
interviews in 23 result categories for our four research questions. During the discussion
of these results, we identify two key recommendations on how we should design future
developer-centric test amplification tools.

With this chapter, we are taking a step towards developer-centric test amplification. In
short, we contribute:

• two recommendations on how to design developer-centric test amplification tools

• a structured overview of the key factors to make amplified tests as well as test
exploration tools suited for developer-centric test amplification

2.1 Creating Developer-Centric Test Amplification

2

17

• a refined, developer-centric test amplification approach, based on the DSpot test
amplification

• a developer-oriented test exploration plugin for the IntelliJ IDE

2.1 CreatingDeveloper-CentricTestAmplification
In this chapter, we aim to investigate the key aspects that make amplified test cases
and test exploration tools suited for developer-centric test amplification by conducting
semi-structured interviews with software developers. To illustrate the concept of test
amplification to our participants and receive rich and concrete input, we want to let them
try out a test amplification tool during the interview. A state-of-the-art test amplification
tool is DSpot [13], which was developed and evaluated during the European H2020 STAMP
project. We adapt DSpot’s amplification process based on the feedback from the reports of
the European project [21] and the requirements posed by our use case of developer-centric
test amplification. To facilitate the interaction of the developer with the test amplification
we also design a prototype of a test exploration tool.

In this section we discuss the inspirations leading to our design of both prototypes,
which is described in Section 2.2. The goal of this section is to clarify our reasoning behind
the design choices we took and connect them to the existing literature and user reports
about DSpot. We formulate four design intentions and present their connection to our
design choices in Table 2.1.

A central part of the load on developers comes from them having to understand the test
cases and judge whether they check intended behavior. According to Meszaros, obscure
tests that are difficult to understand at a glance are an anti-pattern, as it makes tests harder
to maintain and potential bugs in the test code more difficult to detect [3]. As automatically
generating human-readable code is a hard problem to solve, readability and understand-
ability of generated test cases are recurring topics in developer’s feedback: developers
from the STAMP project stated about DSpot that it was hard to interpret the tool’s output
and the “resulting tests were difficult to understand for a human developer” [21]. In some
cases, the developers found the generated tests useful, but so hard to read that they wrote a
corresponding test case themselves. Nevertheless, they were glad that DSpot pointed to real
bugs and supported them in testing exceptional behavior in systems where only the optimal
behavior was tested before. Several previous works in test generation were concerned with
making the generated tests more understandable for developers [32, 34, 35, 47, 60]. This
clearly shows that we should also take understandability into account while designing
our prototypes. Therefore, our first design intention is to generate test cases that are
understandable for developers.

Intention 1 (I 1)

Generate test cases that are understandable for developers

From literature and our own experiences, we understand that the users of current test
amplification tools face obstacles that lead them to abandon automatic test amplification.
During the STAMP project [21], various industrial partners noted that DSpot takes very

2

18 2 Developer-Centric Test Amplification

long to generate test cases. The configuration is overly “complex because of the multitude
of possible parameter values” which require experience to tweak correctly. The high effort
required by users was reported for other test generation tools, too. Previous studies of
EvoSuite pointed out the high load on developers to inspect generated test suites and to
decide if assertions in test cases are correct [46]. They also spend a lot of time analyzing
generated test cases to decide whether to improve or discard them [46] as generated test
cases tend to be less readable than manually written ones [30]. That is why another
intention leading the design of our prototypes is to decrease the load on the developers
while they use test amplification.

Intention 2 (I 2)

Easy interaction to decrease the load on the developer

Another intention leading our design, is that the amplification process should be fast
enough so that developers can start it and receive new test cases in the same session. This
means, for example, that they do not have to wait for an external build process to finish.
We conjecture that this makes it easier for them to understand the results and the value of
the test amplification as they can include it directly while they work on improving their
test suite.

Intention 3 (I 3)

Fast enough for direct interaction

Lastly, it is our intention that the developers can grasp the impact an amplified test
case. They should see the test case as a useful addition when taken over into their test suite.
Impact in this case could refer, for example, to the coverage, code quality, test code size or
test suite runtime. We assume that understanding the impact is a pre-requisite to deciding
whether the test is useful or not. The test exploration tool should make the impact and
the quality of the amplified test cases clear so that the developers see the value that the
automatic test amplification brings them.

Intention 4 (I 4)

Impact is clear to developers and they find the tests useful

Both (I 2) and (I 4) can not be addressed by modifying the test amplification of DSpot
itself. Rather this shows the need for a layer in between the test amplification tool and the
developer that facilitates their interaction. This role is taken by the test exploration tool.

2.2 Bringing Test Amplification
to the Developer (IDE)

Based on the intentions we defined in Section 2.1, we develop prototypes for both a
developer-centric test amplification tool as well as a test exploration tool. We will use these

2.2 Bringing Test Amplification to the Developer (IDE)

2

19

Design Choices
Test Generation Test Exploration

(C
1)

(C
2)

(C
3)

(C
4)

(C
5)

(C
6)

(C
7)

(C
8)

(C
9)

(C
10
)

(C
11
)

(C
12
)

(C
13
)

(C
14
)

(C
15
)

Intention A
m
pl
ifi
ca
tio

n
Re

m
ov
e
ca
lls

in
sid

e
ol
d
as
se
r-

tio
ns

O
ne

in
pu

tm
ut
at
io
n

Ex
pl
an
at
or
y
co
m
m
en
ts

O
ne

as
se
rti
on

ge
ne
ra
te
d

As
se
rti
on

m
at
ch
in
g
in
pu

t
In
st
ru
ct
io
n
co
ve
ra
ge

Lo
ok

fo
r
ad
di
to
na
lly

co
ve
re
d

in
st
.

Re
po

rt
co
ve
ra
ge

ID
E
pl
ug

in
St
ar
tw

ith
ru
n

Ba
ck
gr
ou

nd
ta
sk

D
ef
au
lt
co
nfi

gu
ra
tio

n
Co

ve
ra
ge

in
fo
rm

at
io
n
te
xt

Co
ve
ra
ge

ed
ito

r

Generate test cases that
are understandable for

developers (I 1)
x x x x x x

Easy interaction to
decrease the load on
the developer (I 2)

x x x x x

Fast enough for direct
interaction (I 3) x

Impact is clear to
developers and they find
the tests useful (I 4)

x x x x

Table 2.1: The relation between our design intentions (I 1-4) and the design choices we take for our developer-
centric test amplification and exploration prototypes (C 1-15).

prototypes during our interviews to illustrate a possible version of developer-centric test
amplification. In the following, we present our design and explain how our choices are
motivated by the intentions we set. Table 2.1 gives an overview of these choices, which we
mark throughout the text with (C n).

This section starts with a more detailed definition of test amplification and clarifies why
we choose to base our developer-centric test generation on this technique. We describe
how we adapt DSpot to generate test cases that are better suited to be read by developers.
Further, we present our test exploration tool, the IntelliJ Plugin TestCube , which enables
developers to easily use our developer-centric test amplificationwithminimal configuration,
right from their familiar development environment.

2

20 2 Developer-Centric Test Amplification

Introduction to Test Amplification Test amplification is a term for test generation
techniques that take manually written test cases as their primary input. Danglot et al.
conducted a literature study to map this emerging field and defined test amplification as
follows:

Test amplification consists of exploiting the knowledge of a large number of
test cases, in which developers embed meaningful input data and expected
properties in the form of oracles, in order to enhance these manually written
tests with respect to an engineering goal (e.g., im- prove coverage of changes
or increase the accuracy of fault localization). [42]

For our prototype design we choose test amplification to generate the test cases. We exploit
the existing test cases, as well as the code under test to create additional test cases that
improve the instruction coverage of a test suite.

We base our approach on test amplification (C 1), because we expect that for a developer
already familiar with the test suite it will be easier to understand a variation of an existing
test case than a completely new one. In addition, most software projects that are looking
to improve their testing already have at least a rudimentary test suite.

2.2.1 Developer-Centric Amplification With DSpot
During our interviews, we want to showcase a possible version of developer-centric
amplified test cases to software developers. We adapt Danglot et al.’s tool DSpot [13],
addressing the issues which were already reported by developers. Figure 2.1 gives an
overview of our revised test amplification approach. Starting with the original test case
from the existing test suite, we remove all existing assertions, modify the objects and values
in the setup phase of the test case, add new assertions based on the changed behavior, and
select test cases that cover additional instructions in the code under test.

Our design and implementation is strongly based on Danglot et al. [13] and DSpot
version 3.1.01. We created a fork of their repository2 and contributed our changes back to
DSpot through an accepted pull request3. In the following, we describe for each step the
behavior of the original amplification as well as the changes we made to generate more
understandable test cases (I 1) and convey their value to developers more easily (I 4). We
illustrate our explanations with a running example in Figures 2.2, 2.3, 2.4 and 2.5.

Evaluation

Original
Test Case

Remove
Assertions

Mutate
Input

Generate
Assertion

.

Select
Test Cases

Amplified
Test Cases

Figure 2.1: Overview of our automatic, developer-centric amplification process within DSpot.

1https://github.com/STAMP-project/dspot/releases/tag/dspot-3.1.0
2https://github.com/TestShiftProject/dspot/releases/tag/v3.2.0-dev-friendly
3https://github.com/STAMP-project/dspot/pull/993

https://github.com/STAMP-project/dspot/releases/tag/dspot-3.1.0
https://github.com/TestShiftProject/dspot/releases/tag/v3.2.0-dev-friendly
https://github.com/STAMP-project/dspot/pull/993

2.2 Bringing Test Amplification to the Developer (IDE)

2

21

1 public class AttributeTest {
2 @Test
3 public void html() {
4 Attribute attr = new Attribute("key", "value &");
1 - assertEquals("key=\"value &\"", attr.html());
2 - assertEquals(attr.html(), attr.toString());
1 }
2 }

Figure 2.2: Example amplification: Remove all existing assertions from the original test case.

1 public class AttributeTest {
2 @Test
3 public void html() {
1 - Attribute attr = new Attribute("key", "value &");
1 + // FastLiteralAmplifier: change string from ’value &’ to ’Hello\nthereNBSP’
2 + Attribute attr = new Attribute("key", "Hello\nthereNBSP");
1 }
2 }

Figure 2.3: Example amplification: Mutate string parameter in the constructor of the object under test.

Remove Assertions
At the start of the amplification process, DSpot removes all assertions in the original test
case, as they will likely no longer match the new amplified test case. All method calls
within the assertions are preserved because they might have side effects that influence the
rest of the method calls in the test case.

However, these method calls tend to be confusing outside of the context of the assertion.
As the behavior of the test cases is changed through the amplification anyways, we decide
to also remove method calls within assertions (C 2). Figure 2.2 shows the first amplification
step for our example, where the two assertions of a test case are removed completely.

Mutate Input
DSpot uses a variety of mutations to explore the input space of a test case. Literals like
integers, booleans, and strings are slightly modified or replaced by completely random
values. On existing objects, the input amplification removes, duplicates, or adds new
method calls. It can also create new objects or literals that are then used as parameters for
mutated method calls.

Our developer-centric amplification leverages the powerful input mutations of DSpot.
However, from Grano et al. we know that the more complex a test case is, the harder it is to
understand for a developer [61]. To make the generated test case easier to understand for
the developer, we focus on one input modification at a time (C 3) and add an explanatory
comment to every mutation (C 4). We make use of all available mutation operations in
DSpot 3.1.0. In Figure 2.3 one of the string parameters in the constructor for the object
attr is replaced with a new string that contains the special non-breaking space character.
We also add a comment that details which value was changed to which new value to help
the developer spot the change easily.

2

22 2 Developer-Centric Test Amplification

1 public class AttributeTest {
2 @Test
3 public void html() {
4 // FastLiteralAmplifier: change string from ’value &’ to ’Hello\nthereNBSP’
5 Attribute attr = new Attribute("key", "Hello\nthereNBSP");
1 + Assertions.assertEquals("key=\"Hello\nthere \"", ((Attribute)

↪ (attr)).toString());
1 }
2 }

Figure 2.4: Example amplification: Generate an assertion which checks a behavior changed by mutating the input.

1 Amplified test case ’html_literalMutationString19_assSep92’
2 This test case improves the coverage in these classes/methods/lines:
3 org.jsoup.nodes.Entities:
4 escape
5 L. 197 +3 instr.
6 L. 198 +5 instr.

Figure 2.5: Example amplification: Information about the coverage improvement of the amplified test case.

Generate Assertion
Generating new assertions is one of the central features of DSpot. The tool instruments
the test case to observe the state of the objects under test after the setup phase. Then
it generates assertions comparing the return value of every method call on the objects
under test with the observed value. While adding all generated assertions leads to a more
powerful test case with respect to structural coverage, it also makes the test case hard to
understand and unclear which of the added assertions improve these metrics. To minimize
the generated test cases, DSpot provides a prettifier stage. It removes the assertions one
by one, reruns the metric calculation, and adds the assertion back if the score decreased.
Unfortunately, the stage multiplies the already long runtime of DSpot.

To generate shorter, more understandable test cases (I 1), we opt to only add one
assertion to each test case (C 5). While this at first generates more test cases, the ones
with assertions that do not improve the final selection metric are excluded in the following
step. To produce test cases that developers find useful (I 4), the generated assertion should
assert a behavior that changed through the previously mutated input. To achieve this,
we compare all assertion candidates before and after the mutation and only include an
assertion if the value it asserts changed through the mutation (C 6).

As shown in Figure 2.4, the assertion generated for our example checks the return
value of attr.toString(), which shows the changed input "Hello\nthereNBSP".

Select Test Cases
After generating a broad range of test cases through mutating input values and gener-

ating assertions, DSpot selects which test cases to keep. Depending on the configuration,
DSpot selects test cases that improve instruction coverage, improve mutation score, or
cover the changes in a specific commit.

As determining the mutation score is computationally expensive, it is currently not a
feasible option if the test generation should run on the developer’s local computer and we
want to enable direct interaction with as little wait time as possible (I 3). Therefore, we
select test cases based on instruction coverage (C 7).

2.2 Bringing Test Amplification to the Developer (IDE)

2

23

DSpot originally keeps all generated test cases that by themselves cover more lines than
the original test case they are based on. However, for a developer, it is not important that
the coverage of one test case is high. Rather, a new test case should contribute additional
coverage to the test suite. To determine this, we measure the instruction coverage of the
original test suite on a fine-grained, line-by-line basis. For each generated test case, we
check whether it covers additional instructions on any line (C 8). If that is the case, we
keep the test case, if not, we discard it. The combination of this fine-grained coverage
comparison together with the small number of additions we make to the original test case
(C 3) (C 5) enables us to generate smaller test cases (I 2) compared to DSpot. Furthermore,
these test cases have a local and therefore easier to understand impact on the coverage of
the test suite (I 4).

To communicate to the developer which additional instructions are covered, our
developer-centric amplification reports for each test case in which lines in the production
code additional instructions are covered (C 9). Figure 2.5 shows a pretty-printed version
of the additional information we provide. The amplified test case in our example covers 8
more instructions over two lines in the escape method of the Entities class.

2.2.2 Test Exploration Plugin TestCube

For successful developer-centric test amplification, we conjecture that the second important
step to support developers with amplification test cases is exploration. In this section, we
describe the design of our prototype of a developer-centric test exploration tool: TestCube .
To make our new, powerful test amplification easily accessible to developers (I 2), we
develop TestCube as a plugin to the IntelliJ IDE (C 10). A lot of previous research points
out the importance of integrating tools into existing development environments. It reduces
time and focus lost by switching tools [62] and enables developers to inspect test cases and
related code [59]. TestCube is open source4 and available to download on the JetBrains
Marketplace5. The screenshot in Figure 2.6 illustrates the user interface of TestCube and
how a developer would interact with it. In the following, we present how developers can
use TestCube to amplify tests right from their editor, inspect the generated test cases and
easily integrate them into their code base.

Starting the Amplification
After installing TestCube , the developer can start the amplification in the same way as
she would execute a JUnit test (C 11). She picks an original test case to be the input for
the amplification process (1⃝ in Figure 2.6). Then she can click on the green arrow next to
the test, and select the new option ‘Amplify’ (2⃝ in Figure 2.6). After she selects this option,
TestCube starts amplifying the test in a background task (C 12).

For other test generation tools, research has shown that even though tuning parameters
to the specific project increases performance, using the default settings already produces
good results [63]. To take the configuration burden off the developer as much as possible
(I 2) during our interviews and to evaluate how well our new approach performs with
its default configuration, we choose to set default values for the vast number of DSpot
parameters (C 13).
4https://github.com/TestShiftProject/test-cube
5https://plugins.jetbrains.com/plugin/14678-test-cube

https://github.com/TestShiftProject/test-cube
https://plugins.jetbrains.com/plugin/14678-test-cube

2

24
2
D
eveloper-Centric

Test
A
mplification

Figure 2.6: Overview of the interaction with the TestCube plugin.

2.3 Study Design

2

25

Result Inspection
When the amplification finishes, TestCube notifies the developer with a pop-up from the
built-in notification system (3⃝ in Figure 2.6). The developer can then choose to inspect the
test cases or, in case of reported errors, the terminal output of DSpot.

We present the results of the test amplification within IntelliJ, but in a tool window
separated from the code. The tool window is located on the right, next to the editor with
the original test case selected by the developer. It has various components:

• At the top of the tool window we present information about the currently selected
amplified test case (4⃝ in Figure 2.6): Which modifications were applied to it and
which additional instructions are covered (C 14).

• Next we present navigation buttons to the developer (6⃝ in Figure 2.6). With these
buttons, the developer cycles through the proposed test cases, can add the current
test to the test suite, ignore the current test or close the amplification results all
together.

• Below the navigation buttons we present the amplified test cases in a fully functioning
editor, as shown in (5⃝ in Figure 2.6). The developer can edit the test case in their
familiar environment and use code navigation to inspect called methods.

• The developer can click on the additionally covered lines in the test case information

to open up the coverage inspection editor on the bottom of the tool window.

The editor shows the class where coverage was improved and highlights all addi-
tionally covered lines in green (C 15). Showing the added coverage in the context of
the code under test should help the developer judge the value of the generated test
case (I 4).

2.3 Study Design
The goal of this chapter is to explore which aspects are important to create a successful
developer-centric test amplification approach. To this end, we invited 16 software de-
velopers to try out our prototype TestCube on an example project. We observed their
interaction with the tool and interviewed them on their experience and opinions on how
an ideal test generation tool should behave. We report our observations split along four
sub-questions: With the interviews we investigate what makes amplified tests (RQ1) and
exploration tools (RQ2) suited for developer-centric test amplification, what information
the developers are seeking while investigating the test cases (RQ3) and what value de-
velopers see in test amplification (RQ4). In the following we describe the design of our
interview study: How we recruit participants and ask for their consent, our technical setup,
the flow of one interview as well as our data collection and analysis process.

2

26 2 Developer-Centric Test Amplification

Research Questions

RQ1: What are the key factors to make amplified test cases suited for developer-
centric test amplification?

RQ2: What are the key factors to make test exploration tools suited for developer-
centric test amplification?

RQ3: What information do developers seek while exploring amplified test cases?

RQ4: What value does developer-centric test amplification bring to developers?

2.3.1 Preparation
We used convenience sampling to recruit participants for our interviews. We posted about it
on Twitter6 and wrote to existing industry contacts. In addition, we contacted participants
of a previous survey about motivation to write test cases who indicated to be open for a
follow-up interview.

As we are conducting a study with human participants, we followed the guidelines of
the TU Delft’s Human Research Ethics Council7 and submitted our study design to them
for review. Before each interview, we explained to the interviewees how we will process
their data and asked for consent on participating in the interview, recording the session for
later analysis and publishing the anonymized results in an online research repository. One
participant wished to not be quoted and the corresponding results not to be published in a
research repository, therefore our online appendix [64] excludes the data collected from
that interview.

To showcase TestCube to our participants, we selected the open-source HTML parser
jsoup

8. Jsoup is a mid-sized Java project (35K lines of code), which is built with Maven,
tested with JUnit 5 and was part of Danglot et al.’s evaluation of DSpot [13]. We chose it
because we expected HTML to be a relatively simple and widely understood application
domain, which would require less time to explain to our participants during the interviews.
Jsoup has a test suite with a relatively good instruction coverage of 86 %. Our interviews
focused on the classes Attribute and AttributeTest, as we expected the concept of an
HTML attribute to be known by our participants. Attribute is fairly well tested, with
most functions covered by the test suite. However, its custom implementation of hashCode,
clone and several branches in equals were not covered.

To take the setup burden off of our participants, we set up an instance of IntelliJ with
our plugin on a server and let the interviewees interact with it through the browser. This
was possible through the JetBrains Projector tool9.

6https://twitter.com/laci_noire/status/1328334375537299461, showed to 9527 users, 406 interactions
7https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics, last
visited March 1st, 2021

8https://github.com/jhy/jsoup
9https://jetbrains.github.io/projector-client/mkdocs/latest/

https://twitter.com/laci_noire/status/1328334375537299461
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://github.com/jhy/jsoup
https://jetbrains.github.io/projector-client/mkdocs/latest/

2.3 Study Design

2

27

2.3.2 Interview Procedure
To get a rough context of the participant’s opinion on and knowledge about software
testing, we asked an open question about the participant’s prior experiences with testing
software. Then we briefly introduced test amplification: automatically modifying existing
test cases to generate new ones that improve the coverage and can be taken over into the
test suite. We explained that the goal of the interview is to see their interaction with our
tool and gather feedback on what aspects they like, what they would change, and how
they would use such a test amplification tool in their work. We sent the developers a link
to our online setup of IntelliJ which they accessed through their browser. We introduced
the example project and explained how to start TestCube . From this point on we invited
the interviewee to explore on their own, thinking aloud about all their thoughts and
impressions. We did not define an explicit task to solve, rather our introduction of test
amplification and the user interface of TestCube animated the participants to browse
through the test cases and judge whether to include them, and in some cases include them
in the test suite of the example project. We kept any more explanations to a minimum to
observe a situation as close as possible to the developer interacting with the tool alone. We
let each participant amplify and browse through several test cases for about twenty minutes.
During this time we ask them to think aloud about their impressions. We nudge them by
asking questions about their actions and opinions on TestCube ’s behavior. At the end
we asked them to fill out the System Usability Score questionnaire, a metric frequently used
in the field of Human-Computer Interaction to assess how useable a product is [65]. While
filling out the questionnaire, we ask them to reflect on the usability of the plugin and how
it could be adapted to better fit their needs.

2.3.3 Data Collection and Analysis
We recorded all interviews, including the screen of the developer while they were interact-
ing with TestCube . In addition, the interviewer took extensive notes. We performed open
coding [66] to analyze the interview notes, checking back with the recording when any-
thing was unclear or missing from the notes. Following that, we applied axial coding [66]
to structure the emerged codes. We report our findings along these axial codes, which we
assigned to each of the research questions. Table 2.2 presents the axial codes arising from
our analysis of the interviews.

All interviews and the initial coding were performed by the first author. To increase
the validity of our analysis, the second author watched two of the performed interviews,
took notes and coded them separately. Then we compared the codes both authors created
for the validation interview and refined our coding schema and our interpretations of the
interviews. We saw that both focused on different aspects of the interviews, one assigning
about 20 codes and the other one about 10 codes per interview. In total, we agreed on 90 %
of the assigned codes in the first validation step. As a second validation step, we performed
an inter-rater reliability analysis. We selected re-occurring topics from our codes that
appear in 4 or more interviews. The second author assigned them to 3 further interviews.
To compare the assignments of both authors, we calculate the percentage agreement (70 %)
and Cohen’s Kappa (60 %, moderate agreement). The value of Cohen’s Kappa is relatively
low, because some of the codes we validate have skewed values. If a code appears in nearly
all the cross-validated interviews, its chance of appearance is close to one, leading to a

2

28 2 Developer-Centric Test Amplification

small Cohen’s Kappa because arithmetically the agreement could be a coincidence. We
provide our code book together with the code’s frequencies in the interviews, as well as
our cross-validation ratings in our online appendix [64].

2.4 Results
In this section, we present the results we elicited from our study. Firstly, we give an
overview of key demographic factors characterizing our study participants. Secondly,
we detail what factors are important to the developers when it comes to the generated
test cases themselves (RQ1) and which aspects make a test exploration tool developer-
friendly (RQ2). Next, we describe the various kinds of information the developers sought
while exploring the generated test cases (RQ3) and what value our interviewees saw in
automatic test generation (RQ4). Every observation that comes from the interviews will
be labeled with (O n) and if it is directly tied to one of the codes we assigned, we also
report its support, i.e., in how many interviews we observed it. The observations without
explicitly mentioned support summarize multiple codes, describe anecdotal evidence or
report general impressions we obtained overarching the single interviews. Even though
we cannot link them to a specific code from our interview notes, we still consider them
valuable to report for our qualitative study.

While high support signals that a topic is very relevant for our participants, we cannot
infer from a small support number that an aspect is less relevant. As we wanted to
explore as many aspects of developer-centric test amplification as possible, we mainly
let the comments of our participants guide the direction of the interviews, similar to an
unstructured interview [67]. This lead to many observations only appearing in a small
number of interviews, possibly because the topic they concerned was only reached in a
small number of interviews.

Throughout this section, we structure our explanation along the axial codes of our
results presented in Table 2.2.

2.4.1 Participants
We recruited 16 participants for our study, whose demographics are summarized in Fig-
ure 2.7. As shown in Figure 2.7a, their previous experience with software development was
distributed in a range from two to 23 years. Most of them work in teams of two to nine
and consider Java to be among their primary programming languages. Our participants
work in a wide variety of industries, which are presented in Figure 2.7d.

2.4.2 RQ1: What Are the Key Factors to Make Amplified Test
Cases Suited for Developer-Centric Test Amplification?

During the interviews, it quickly became clear to us how important the test cases themselves
are for the developers. Many of our participants were directly focusing on the test cases
and spend much of their time praising or critiquing them (O 1). This is reflected in the
large number of observations with high support we present in this section. What unified
our participants is that they tried to understand the generated test cases (O 2). Rojas et al.
also noted that how easy it is to obtain the intent and behavior of a test case is a strong
indicator for its quality [47].

2.4 Results

2

29

Identifiers
ConciseCode
Consistent
Relevant
Invariant

Generated Test Cases
RQ1

Behavior
Diverging
Minimal Configuration
IntegrationEase of Use
Usability

Information Management
Focus

Runtime

Exploration Tools
RQ2

Expectation Management Capabilities
Behavior / Intent
OutcomeTest Case
Runtime

Code Under Test
Coverage

Sought Information
RQ3

Original Test Case
Ease Test EngineeringImprove Test Suite Inspiration

Learning
Value for Developers

RQ4
Confidence

Table 2.2: Structured overview of the answers to our research questions. Shown are the axial codes we obtained
during our data analysis described in Section 2.3.3.

2

30 2 Developer-Centric Test Amplification

0

1,5

3

4,5

6

2 - 5 6 - 10 15 - 23

(a) Years of Experience

0

3

6

9

12

1 2-9 10-19

(b) Team Size

Java
Python

TypeScript
Rust

Go
JavaScript

C#
Scala
Ruby

Groovy
0 3 6 9 12

(c) Primary Languages

Software development - other
Consulting

Research - academic or scientific
Web development or design

Internet
Software as a service (saas) development

Data and analytics
Manufacturing

Security
Transportation

0 1 2 3 4

(d) Industry Domain

Figure 2.7: Summarized demographics of our interview participants.

Code: Identifiers Looking at the code of the test cases, the most prevalent comment
was the need for less cryptic identifiers (O 3, Support: 14). The developers wished
that the identifiers, such as the test name or variable names, convey the intent of the
new test case (O 4, Support: 2). They gave examples such as which code is additionally
covered or simply which methods are newly called. More expressive identifiers would help
them understand the intent of the test case faster. While integrating the test cases, many
participants renamed the test cases (Support: 7) and the used variable identifiers (Support:
3). For identifier names that should be renamed by the developer during the inspection,
two participants promoted a clearer naming such as “placeholderN”.

Code: Concise We observed that the code should be as concise as possible. Developers
were confused by unnecessary statements (O 5, Support: 7), which were left over from
the amplification process. Underneath them were object initializations or method calls no
longer relevant for the intent of the new test case. The developers needed additional time
to detect these statements as unimportant and to delete them (O 6, Support: 3).

We saw a similar effect with unnecessary casts (O 7, Support: 8) introduced by
DSpot for type safety. In many cases, the casts could be identified as superfluous, but the
developers were unhappy that extra work is necessary to remove obviously superfluous
code.

For generated assertions that check the return value of a function, DSpot actively splits
the function call and the assertion through a variable declaration. While one participant
preferred this step for clarity and would find it easier to understand with an expressive
variable name, three other participants were annoyed by the additional bloating of the
code (O 8, Support: 3). While inlining the variable declaration a participant even pointed

2.4 Results

2

31

out that splitting the function call from the assert statement lead to less powerful asser-
tions being used (O 9). Instead of assertNotEquals the test used assertFalse, which
gives a much less expressive error message in case the assertion fails. assertNotEquals
throws a org.junit.ComparisonFailure and prints the expected and actual values, while
assertFalse simply throws an java.lang.AssertionError at the line of the assertion.

Another issue brought up by the developers was concise input strings. To generate
parameters while creating new objects for the setup phase of a test case, DSpot can generate
unnecessarily long random strings of characters (O 10, Support: 2). To understand the test’s
behavior, developers now would need to know which of these characters are important for
the intent of the test case, which takes a lot of time and effort. In one case we observed,
DSpot created a new object and checked that it is not equal to the existing one. The
developer spent a lot of time going through the various special characters in the constructor
parameters for the new object, trying to determine which one is triggering the behavior of
the test case. In the end, none of the special characters were necessary, the strings simply
had to be different from the strings initializing the existing object. This anecdote points to
the need for minimizing input values in generated test cases, which was also pointed out
by Fraser et al. [11]

Code: Consistent Apart from the need for the test code to have a high quality [38]
itself, it should also be consistent with the rest of the test suite. Three participants pointed
out that the assertion methods were fully qualified instead of statically imported, like in
the original test case (O 11, Support: 3). A similar comment was made for the identifiers,
which one participant wanted to be in the same naming schema as existing test cases.

Behavior: Relevant Moving to the behavior of the test cases, we saw that it is important
to test methods relevant to the developers. As our example project already had a relatively
good test suite covering most core functions of the class, many of the proposed test cases
covered extra branches in equals, hashCode or clone. The initial reaction of various
participants was “I would not test this method” (O 12, Support: 11), leading some to
discard the test directly. Others investigated further and uncovered that hashCode was
overwritten with a custom implementation, which for one participant meant it was relevant
after all to test the method. We believe that it is not only important to focus on testing
methods important to the developer, such as core functions defined in a class, but also
to make it clear why a newly covered function is considered important, e.g., because it
overwrites the defaults with a custom implementation. How many interesting test cases
are proposed was an important point for the developers we interviewed, this would majorly
influence whether they keep using TestCube (O 13, Support: 4).

Behavior: Invariant A further comment on the behavior of the generated test cases was
that developers would like them to test invariants of methods instead of absolute values
(O 14, Support: 8). The most prominent example being hashCode. As other test generation
tools, DSpot uses the current behavior of a system as an oracle. To test hashCode, it calls
the method on an object and creates an assertion comparing the resulting value to the
return value of hashCode. This is a fragile test case, as the hashCode changes as soon as
any changes are made to the class’s attributes. Our participants advocated testing the

2

32 2 Developer-Centric Test Amplification

invariant of hashCode instead of an absolute value. Interestingly though, they proposed a
variety of ways how to test this invariant: Cloning an object and checking the hashCode is
still the same (as well as that they are equals), creating the same object twice and compare
the hashCode, check that if equals is true the hashCode is also the same, or even creating
random objects and verifying that only a few of them lead to hashCode collisions. While
proposing amplified test cases to open source projects, Danglot et al. also saw diverging
reactions to test cases testing hashCode [13].

Behavior: Diverging One of our observations that is special to test amplification is
how far the behavior of the generated test case should diverge from the original test case
(O 15, Support: 6). Some of our participants were enthusiastic that the generated test cases
explored so many new paths and scenarios, even naming this as one of the key strengths of
TestCube . Others were confused by this divergence as they mainly focused on comparing
the behavior of both test cases. The most severe cases of such a divergence approach
when the original test case involves objects from another class than the class under test.
Some of the amplified test cases then test functionality in this other class and completely
disregard the original class under test (O 16, Support: 3). While these tests can be valid
and helpful additions to the test suite, our participants mostly disliked them, because they
were focussing on testing the original class under test. In a future version of TestCube ,
tests for another focal class should be marked as such and proposed to be added to the
fitting test class.

RQ1: The Key Factors to Make Amplified Test Cases Suited for Developer-
Centric Test Amplification

Summarizing the results and observations described in this section, the key factors to
make amplified test cases suited for developer-centric test amplification are concerned
with the code and the behavior of the test cases. When it comes to code, the variable
identifiers and test names should be meaningful, the code should be short and concise,
and consistent in terms of quality and style with the rest of the test suite. With respect
to its behavior, an amplified test case should execute scenarios that are relevant for
the developer, should test invariants in place of absolute values where possible, and
should match the developer’s expectation in terms of divergence from the original
test case.

2.4.3 RQ2: What Are the Key Factors to Make Test Explo-
ration Tools Suited for Developer-Centric Test Ampli-
fication?

To enable developers to interact with and judge the amplified test cases, we created a
test exploration tool. In the following, we will explain our observations from the inter-
views on what factors are important for such a tool to be suited for developer-centric test
amplification.

Ease of Use: Minimal Configuration First and foremost, a test exploration tool should
be easy to use and especially easy to start. Our approach of using a default configuration

2.4 Results

2

33

was successful, two of our participants pointed out how little effort was needed from their
side to get started (O 17, Support: 2). Some still noted concerns about how easy the
tool would be to set up locally for their projects (O 18, Support: 2), so clear supporting
documentation is important if one wants to let the developer try out and discover a tool all
by themselves.

Ease ofUse: Integration A factor that helped developers start up and explore TestCube
so quickly was its tight integration with IntelliJ (O 19, Support: 3). Participants noted
that it was easy to start from the “run test” location, two made use of the built-in code
navigation to explore the code under test (O 20, Support: 2) and one liked that they could
perform all actions without having to switch tools (O 21, Support: 1).

Ease of Use: Usability In addition to minimal configuration and being integrated,
a developer-centric exploration tool should also adhere to the long-established criteria
for usability from Human-Computer-Interaction research [68]. We have seen that it is
important to give the developer control over the layout of TestCube : various participants
had different wishes for which information they want to see and how much space the tool
should take up on their screen (O 22, Support: 1 each from 5 codes). Some were looking
for buttons to close, e.g., the coverage editor they no longer needed (Support: 3) or got
confused after they could not undo an unintentional action (Support: 3). We believe it is
crucial for a successful tool to give the developer options to configure the layout of the
tool to fit their needs and let them recover from errors.

With the help of the System Usability Score, we evaluated the overall usability of
TestCube . 44 % of our participants rated the usability as “Excellent”, 38 % as “Good” and
19 % as “Poor”. This shows that even with the above mentioned issues, we overall succeeded
in creating a tool that is easy to use.

Information Management We observed big difficulties with managing the infor-
mation TestCube is displaying for developers. The text detailing which instructions
are additionally covered was overlooked by many study participants, some later said they
thought it is “unimportant debug output” (O 23, Support: 3). Providing the information
sought out by developers in a way that does not overwhelm them and is accessible to them
where they expect it is one of the big challenges looking at future versions of TestCube .
Also the number of generated test cases should not be too large (O 24, Support: 4). For
some methods, over fifty new test cases were proposed that one by one tested a previously
uncovered class. One participant said they lost interest after looking over several of these
test cases and seeing how many were left (O 25, Support: 1). An effective test exploration
tool should focus on a few impacting test cases to not overwhelm the developer and keep
each interaction session compact. Additionally it would help to rank the generated test
cases and show the most impactful ones first.

Focus Related to information management is also the issue of focus. Through nearly
each one of our interviews, we saw how important it is to only show information to the
developer which they are supposed to focus on in that moment. In the current design of
TestCube , the amplified test cases are all part of the same text file presented at once in

2

34 2 Developer-Centric Test Amplification

an editor. This means that multiple tests are visible at the same time. While TestCube ’s
internal navigation, e.g., the coverage information and the automatic adding to the test
suite, was focused only on the first test case at the start, many of our participants started
scrolling through the list of test cases immediately (O 26, Support: 5). Later some of them
were confused (O 27, Support: 3), as they tried to add the test case they were currently
focussing on to the test suite, while TestCube copied over the first one in the list. It is
therefore extremely important for a future test exploration tool to make sure the focus of
the developer aligns with the focus of the tool. For example, by only showing the code of
one test at a time and therefore forcing the user to click on the next and previous buttons
to explore the generated test cases.

Manage Expectations: Runtime A test exploration tool shouldmanage the expec-
tations of its users. We observed this with the runtime of the amplification process.
Even though we took care in our configuration to keep the runtime of DSpot as low as
possible, in some cases the generation still took several minutes to complete, which four
participants considered as too long (O 28, Support: 4). While we included a business
indicator that signaled to the developers that the amplification is running a background
task, many were wondering how long it will take before they get results. Our participants
wished for an expressive progress bar that either gives an estimation of the remaining
time or at least shows an approximated form of progress (O 29, Support: 2). Some were
wondering whether, or even expecting that, it is possible to switch to another task while
they were waiting.

Manage Expectations: Capabilities The expectations with respect to the capabilities
of a tool should also be correctly set. As we gave the developers only a minimal introduction
to the tool, it was not clear for some whether the generated test cases are meant to replace
the existing test case or are meant to be an addition to the test suite. Toward the end of
their interviews, participants pointed out that they slowly understand the power of the
tool better and see clearer how they would employ it (O 30). One pointed out that the
generated test cases were much more appreciated by him now that he understood the
editing effort which was necessary before including them.

Overall, we observed a plethora of important aspects to make a test exploration tool
developer-centric. It should be easy to start and use, the way of displaying information
needs to be carefully chosen, it has to keep track of the focus of the developer and manage
the user’s expectations towards its capabilities and runtime.

2.4 Results

2

35

RQ2: The Key Factors to Make Test Exploration Tools Suited for Developer-
Centric Test Amplification

In summary, a key factor to make test exploration tools suited for developer-centric test
amplification is making the tool easy to use: through minimal configuration, through
a tight integration into the developer’s existing environment and through adhering
to established usability principles. Such tools should manage the information they
present to the developer and help the developer focus on the information they need
for their current task. Further, a test exploration tool should manage the expectations
their users have towards the runtime and the capabilities of the tool to ensure that
these expectations can be fulfilled.

2.4.4 RQ3: What Information Do Developers Seek While Ex-
ploring Amplified Test Cases?

While exploring the generated test cases, our participants did not only scrutinize the test
code itself but were also looking for and asking about a lot of additional information. We
saw that it is crucial to provide quick and familiar ways for developers to provide this
information so they can efficiently decide on whether to keep or how to adapt an amplified
test case.

Test Case: Behavior / Intent As mentioned in Section 2.4.2, the test cases themselves
and their behavior or rather their intent were a main focus of the developers. After
making edits to a test case, one participant wondered whether the original intent of the
generated case was still preserved (O 31, Support: 1). This is in line with Grano et al.’s
results: developers are concerned with determining whether a unit test “actually exercises
the corresponding unit” and how many relevant scenarios are covered [61]. Prado and
Vincenzi showed that the code of a test case is one of the main sources of information
about a test case for the developer [69], an observation corroborated by Aniche et al. [28].
As far as we observed, the current editor displaying the code of the generated test case is
enough to satisfy this information need for developers.

Test Case: Outcome Furthermore, the developers were interested in the outcome
generated test cases (O 32, Support: 3), i.e., whether they are passing or failing. As all test
cases generated by DSpot pass, this could be addressed by a better explanation of the tool.
Alternatively, tool developers could provide the existing IDE utility to run a test case in
the editor proposing the new test case or provide functionality such as Infinitest, a tool
that runs JUnit tests continuously in the background [70]. This would allow the developer
to easily check that a test case is still passing after editing it and before integrating it to
the test suite.

Test Case: Runtime The runtime of a test case was also pointed out by one of our
participants (O 33, Support: 1), as they were used to projects where increasing the runtime
of the continuous integration build was frowned upon. Test exploration tools should
include a note about the measured execution time with each test case.

2

36 2 Developer-Centric Test Amplification

Code Under Test While inspecting the new test cases, most of our participants quickly
jumped to also inspecting the code under test. Two were trying to understand its behavior
(O 34, Support: 2) to see the intent of the test case and to judge whether the additional
coverage was relevant. Also, they checked if the tested method overrides standard behavior
and if exceptions were thrown and tested. As Spadini et al. already pointed out, it is
crucial for test review tools to provide easy navigation between test code and the code
under test [59]. Prado and Vincenzi point out that developers should receive tool support
to build the context between test code and code under test [69]. Through reusing the
standard editor component of IntelliJ, TestCube allows its users to use their familiar code
navigation tools, such as command-click to go to the definition of a method.

Coverage The third large area developers wondered about was coverage. Under this
falls the original coverage of the test suite and which additional coverage each generated
test case and all the generated test cases together yield. A recurring question was whether
a functionality covered by the generated test cases was already covered by another test case
(O 35, Support: 2). Developers scanned the test suite to find other tests calling the same
method. Even though TestCube provides detailed information on which instructions are
additionally covered by the new test case, not all participants understood that this implies
the instructions were not covered by any existing test case. The developer that found our
visualization of the added coverage, found it helpful to see the covered lines not only as
numbers but also in the code context (O 36, Support: 1). They wished for a separate report
of the original instruction coverage and the improvement of instruction coverage after
including the amplified test cases. We also observed two times that the developers used the
coverage of a test case to infer its intent (O 37, Support: 2), an observation also made by
Grano et al. [61]. Sometimes it was unclear to our participants why the new code covers
these additional instructions (O 38, Support: 3). This points towards a need for exploration
tools to visualize clearer how test code and code under test connect.

Instruction coverage seemed to be a satisfying metric for most of our participants. Some
of them wished for more information about how many branches are covered or hoped the
tool would help them cover all branches as they would aim for while writing unit tests
themselves. Even though some of our participants were aware of the concept of mutation
score, none of them asked for information about improved mutation score or for test cases
that kill additional mutants. Rojas et al. saw that in an industrial context many developers
used coverage to evaluate a generated test case [47].

Original Test Case Special for the case of test amplification, was the interest of the
participants to inspect the original test case that was the basis for the amplification.
They tried to understand the intent of the original test case (O 39, Support: 5) and used
this information, together with the knowledge of which instructions were changed to
determine the behavior of the amplified test cases (O 40, Support: 2). Highlighting the
changes from the original to the generated test case through comments (C 4) was not
successful in our study. The developers ignored them and questioned their usefulness
(O 41). We hypothesize that the generated test cases were short enough to spot the changes
without the comments.

2.4 Results

2

37

RQ3: The Information Developers Seek While Exploring Amplified Test
Cases

In our interviews we observed that developers are interested in a wide array of
information while exploring and inspecting amplified test cases. For a test case itself,
developers try to understand its behavior and intent, ask whether it is passing and how
long it takes to execute. Beyond the test case, they are concerned with the code under
test, the original and added coverage as well as the original test case the amplification
was based on.

2.4.5 RQ4: What Value Does Developer-Centric Test Amplifi-
cation Bring to Developers?

One way to make developer-centric test amplification successful, is to bring across the
value they can expect from the amplified test cases and from using the test amplification
tool. To give us an indication, which values we should focus on, we collected comments
from our participants about the benefits they believe they would achieve from using a tool
similar to TestCube .

Improve Test Suite: Ease Test Engineering First and foremost, automatic test amplifi-
cation would help them improve their test suite. By proposing complete, ready-to-run
test cases that cover more code or interesting behavior (O 42, Support: 4), automatic test
amplification eases test engineering for developers. The test amplification alleviates the
developer from having to write test cases from scratch, reducing the effort necessary to
develop a test suite. Reducing effort is a concern for developers: one participant stated, that
they would “either look for less work or for tests with a better quality” (O 46, Support: 1).

Improve Test Suite: Inspiration The generated test cases also provided inspiration.
Several users created new test cases to cover the behavior of the amplified test cases (O 47,
Support: 4). They were glad to be pointed to untested code paths (O 43, Support: 4) and
to unexpected scenarios that could happen in the system (O 44, Support: 1). A recurring
comment was that a test covers methods the participant always forgets to test (O 45,
Support: 3). By proposing new scenarios with the generated test cases, test amplification
tools can take the burden of designing test scenarios of the developers.

Learning Packaging test case generation in an easily accessible plugin can be a valuable
step to enable more developers to learn about test amplification itself. Many of our
participants did not know about the technique of test amplification before and one said
that a plugin like TestCube could be a way to bring this idea into industry (O 48). The
participants got more confident towards the end of the interviews about what TestCube
can do for them and how they could apply it effectively (O 30). In general, we saw that
amplification was easy to grasp for the developers (O 49). A participant pointed out they
would like to use such a tool while they are working on improving the test suite (O 50,
Support: 1) and another was eager to try it on their own projects (O 51, Support: 1).

2

38 2 Developer-Centric Test Amplification

Confidence One participant said that using TestCube more often would increase their
confidence in their test suite (O 52, Support: 1). On the one hand simply through the
higher coverage after adding the generated test cases, and on the other hand because they
see more important scenarios being covered.

RQ4: The Value Developer-Centric Test Amplification Brings to Developers

Our participants named a number of benefits they would gain from using an automatic
test amplification tool regularly. It would make it easier for them to develop test cases,
by alleviating them from the effort to write the test cases and by providing inspiration
of scenarios they tend to forget to test. A developer-centric test amplification approach
would support them learning about automatic test amplification and using it would
increase their confidence in their test suite.

2.5 Discussion and Recommendations

In the following, we consolidate our results into two actionable recommendations on how
to make amplified test cases and test exploration tools suited for developer-centric test
amplification. Table 2.3 shows from which of our interview observations we infer the
recommendations.

We chose an additional layer between the test amplification and the developer, a test
exploration tool, to address the issues users previously reported with DSpot. Our prototypes
could already surface different kinds of information the developers were seeking, such as
the behavior of the test case (O 2), its coverage (O 35), or which code is tested (O 34).
Further, it became clear how tightly the characteristics of the test exploration tool are
bound to the kind of test cases it presents to the developer. In our design, the technique of
test amplification (C 1) and the information from the amplification process reports (C 9),
is tightly bound to what our exploration tool TestCube presents to its users about the test
cases (C 14). Our participants were questioning how the test cases are generated, and also
sought information especially related to test amplification, like the original test case (O 39)
(O 40). We saw the importance of expectation management (O 30), e.g., on how much they
should edit the proposed test cases, and conveying the value the test amplification can bring
to the developer, such as pointing to untested code paths (O 43). The tight integration
into the developer’s IDE was helpful to get them started quickly (O 19). Overall, we saw
a positive effect of using a test exploration tool to facilitate the developer-centric test
amplification. We conjecture that this support of an integrated test exploration tool is
also beneficial for other test generation approaches that aim to be developer-centric. We
recommend to future authors of developer-centric test generation approaches to provide a
test exploration tool that is targeted towards the test generation method they employ and
accessible to the developer from their familiar environment.

2.5 Discussion and Recommendations

2

39

Recommendation Corresponding Observations
Recommendation 1: Consider the inter-
action of the developer with the test cases:
provide a test exploration tool that is tar-
geted towards the test generation method
and integrated into the developer’s environ-
ment.

(O 2) (O 35) (O 34) (O 39)
(O 40) (O 30) (O 43) (O 31)
(O 24) (O 26) (O 27) (O 28)

Recommendation 2: When the main goal
is for developers to accept a test case into
their maintained test suite, it is more impor-
tant that the test case is understandable and
relevant to the developer, than how much it
impacts the coverage of the test suite.

(O 2) (O 3) (O 5) (O 7) (O 12)
(O 35) (O 14) (O 11) (O 9)
(O 10)

Table 2.3: Connection of our recommendations to our interview observations.

Recommendation 1

Consider the interaction of the developer with the test cases: provide a test exploration
tool that is targeted towards the test generation method and integrated into the
developer’s environment.

Concretely, TestCube can be improved in several points: Clearer visualization of the
connection from the amplified test case to the additionally covered instructions in the code
under test (O 23) (O 34) (O 38) and describing the behavior of the amplified test case and
how it diverges from the original test case (O 31). Further we can help developer focus by
proposing one test case at a time (O 24) (O 26) (O 27) and address waiting time (O 28) by
generating test cases before they are requested.

Looking at the results of our first research question, we can see that the developers
were mainly concerned with understanding the test cases TestCube presented to them
(O 2). The observations which occurred in most interviews are about the identifiers
(O 3), the conciseness of the code (O 5) (O 7), and trying to understand the behavior and
intent of the test case (O 31), be it through the test code itself or the various other kinds
of information sought. During our interviews, the understanding was always the first
step—only after the participants understood a test case they started to judge the impact
or relevance (O 12) (O 35). When judging the test cases, we observed that not all tests
which increase instruction coverage are relevant to developers, e.g., because they test a to
them less important method (O 12) or a too narrow behavior (O 14). From these results,
we infer that for a developer-centric approach, where the central aim is for a developer
to take over the generated test case into their maintained test suite, the understandability
of the generated test case and the relevance to the developer is of a bigger concern than
how high its numeric impact is on the coverage of the test suite. An understandable test
case with a weaker coverage contribution is more likely to be accepted by developers,
compared to a test case that increases coverage greatly but they discard because they can

2

40 2 Developer-Centric Test Amplification

not understand what it does. We recommend to future authors of developer-centric test
generation approaches to prioritize the understandability of the generated test cases and
their relevance to the developer higher than their impact on the coverage of the test suite.

Recommendation 2

When the main goal is for developers to accept a test case into their maintained test
suite, it is more important that the test case is understandable and relevant to the
developer, than how much it impacts the coverage of the test suite.

Concretely, the amplified test cases generated by DSpot can be improved by generating
useful identifiers (O 3), possibly informing about the unique coverage provided by the
test case (O 35) [33]. Further unnecessary statements (O 5) and casts (O 7) should be
removed [71], the style of the test cases (O 11) can be adapted to fit the existing test suite,
randomly generated strings shortened and focused to the part triggering the tested behavior
(O 10), and assertions adapted to use the most specific assertion giving an informative
error message (O 9).

Our participants pointed out how easy it was to interact with TestCube right from
their IDE (O 17) (O 19) (O 20), many found test cases that they liked and added them into
the test suite of our example project. We conjecture that combining the already powerful
state-of-the-art test amplification approaches with well-designed, developer-centric test
exploration tools will let us reach more developers to amplify their software testing practice.

2.6 Threats to Validity
There are several threats to the validity of our results which we discuss in this section.

Confirmability To ensure that our results are formed by the interviewees and not by
the authors, we base our results as closely as possible on the interviews. While coding
and analyzing the interviews we performed extra steps to validate the codes elicited
from the interviews and evaluated the inter-rater reliability, as described in Section 2.3.3.
Nevertheless, other researchers might structure the resulting codes differently or draw
varying conclusions from them. We publish the full codes together with their frequency in
our interviews [64] for others to further explore the research area and add to our study.

Reactivity and Respondent Bias As the first author created the prototypes and con-
ducted all interviews, the statements of the participants might be influenced by the par-
ticipants wanting to please the creator of the tool they are evaluating. To mitigate this
threat, we repeatedly invited the participants to be critical and refrained from defending
the current state of the tool. Based on the wide variety of critical and positive points we
could collect, we conjecture to have mitigated this threat.

Construct Validity A threat to the construct validity of our study is that our participants
interacted with an early prototype showing one possible design of a test amplification tool.
Bugs in the prototype or design decisionswe took could influence the developer’s experience
and the generalizability of the results to general test amplification approaches. We identify

2.7 Related Work

2

41

several of our results as being related to our choice of test amplification to generate the
test cases (C 1), which we indicated while reporting them in Section 2.4. Similarly, our
observations can be influenced by our default configuration of DSpot. Optimizing the
configuration of DSpot to fit the target project would likely lead to more relevant test
methods being generated. Furthermore, our participants were not developers of the example
project we used in the study. We expect that developers familiar with a project would
spend less time on understanding the original and amplified test cases and could judge
more easily if a production method is relevant to be tested.

Dependability Whether our results are consistent and can be repeated in a replication
is the concern of dependability. With 16 participants we were able to interview a relatively
large number of software developers. Our presented results mainly focus on observations
that we made in multiple interviews (that have high support). Nevertheless, there were
many insightful comments that only emerged from one or a few interviews. Through the
openness of our setup and questions, the interviews went in many different directions
and the observations we could make are dependent on the taken direction. We expect
that repeating this study would yield different support for the rarely-mentioned aspects,
however the overall conclusions will likely stay the same.

External validity There are several threats to the generalizability of our results. As
well as other state-of-the-art test generation tools, our prototypes address Java and its
specific properties. We expect our results to generalize to other object-oriented, statically
typed languages and are curious to see the different information needs developers of other
programming languages have.

The choice of presenting our prototypes together with the example project Jsoup can
also impact our results. Because equals, hashCode and clone were not covered by the
existing test suite, DSpot generated tests mainly for these functions that were named
“irrelevant” by several of our participants. In other projects whose test suite has a lower
or differently distributed coverage, the aspect of testing relevant methods might be less
apparent.

As we performed convenience sampling, the results of our study might be influenced by
our professional networks, as well as a self-selection bias of developers that are especially
interested in high-quality test suites. From the demographic information we collected, we
conclude that we sampled from a broad variety of experiences, industry domains and team
sizes.

2.7 Related Work
Various past works have focused on the two main parts of or approach, mainly improving
the understandability of test cases and integrating test generation tools into development
environments.

2.7.1 Understandability of Test Cases
The issues of cryptic identifiers and lack of documentation in generated test cases are
addressed by Roy et al. [34] in their tool DeepTC-Enhancer. With a combination of templates

2

42 2 Developer-Centric Test Amplification

and deep learning, they generate comments that explain the behavior of a test case and
meaningful identifiers. Their work is an extension of TestDescriber by Panichella et al. [35]
and was evaluated by 36 developers. The developers were most enthusiastic about the
meaningful identifiers, while some said the explanatory comments are not concise enough.
In our interviews, we also observed the importance of expressive test names and variable
identifiers. While our participants were trying to understand the behavior of the amplified
test cases, they could interpret the raw code of the test cases well. Therefore, we do not
believe any additional summarization of the test itself is necessary. Easier access to the
code under test and information about previous and added coverage are more relevant
concerns going forward. In similar vein, Li et al. describe UnitTestScribe [72].

Alsharif et al. [73] investigated which factors are important for the understandability of
automatically generated SQL schema tests. They saw that human-readable string values are
better to understand than randomly generated ones and the repetition between generated
test cases made it easier to focus on the relevant differences of the test cases towards
each other. Their results align with ours: Randomly generated strings were mentioned
as confusing and our interview participants repeatedly used the similarity between the
original and the amplified test case to understand the behavior and impact of the newly
generated test case.

Daka et al. [29] define a regression model for test case readability based on various
syntactic properties of test cases. They integrate the model into the fitness function of
EvoSuite [10] to generate more readable test cases. In their model and post-experiment
survey they identified several important factors overlapping with our findings: Identifiers
are important for the understandability of a test case, as well as no unnecessarily defined
variables and short string literals.

Next to DeepTC-Enhancer by Roy et al. [34], several further works focus on generating
meaningful names for test cases. NameAssist by Zhang et al. [31] infers test names from the
class under test, the expected outcome stated in the assertion and the overall test scenario
defined in the body of the test. Daka et al. [32] derive test names from additionally covered
exceptions, methods, outputs and inputs of the component under test. They showed that
the generated names are equally excepted compared to names given by developers and
made it easier for developers to match a test to the code under test. Including an advanced
name generation approach such as the one by Daka et al. [32] would be a valuable addition
to TestCube and DSpot.

Bihel and Baudry [36] focused specifically on making tests amplified by DSpot more
accessible for developers. They generate a natural language description of the changes
made during the amplification, of the value observations which lead to new assertions,
and of the mutants which will be killed by the newly added test cases. These descriptions
are designed to accommodate a pull request proposing to add an amplified test case. In
comparison, TestCube focuses on a just-in-time interaction of the developer, embedding
test amplification into their IDE. In our scenarios, not only tool performance, but also the
amount of presented information is a distinguishing challenge. Compared to Bihel and
Baudry’s approach [36], TestCube more carefully selects the information presented to
the developer. We also evaluate our approach in a study with developers.

Because of the high computational cost of test generation, many tools have opted for
integration into the continuous integration process [18, 74]. This, however, leads to a

2.7 Related Work

2

43

long time distance between triggering the test generation and receiving results [75], as
well as the developers having to inspect the tools outside of their familiar development
environment. To provide more immediate value and direct feedback, we opted to let
TestCube run on our user’s computers, leading to many more constraints regarding the
available execution power and therefore possible complexity of the applied algorithms.

2.7.2 Test Generation Tools Integrated in the IDE
Several other test generation tools have been integrated into IDEs up until now. Following
an industrial study of EvoSuite, Rojas et al. [47] pointed out the importance to integrate
test generation tools into development environments. Since then, EvoSuite has been lightly
integrated into IntelliJ IDEA as a plugin [74] which provides options to configure the
test generation within an existing build process. In contrast to this, TestCube runs
independently from a project’s build process and can be installed and applied with nearly
no configuration10.

DSpot has been integrated into the Eclipse IDE as a plugin together with other tools
from the STAMP project [76]. The plugin offers a graphical interface to set the various
configuration parameters of DSpot and start the amplification process. Compared to
TestCube , the additional information showing the impact of a generated test case is just
presented as a JSON text and the developer is still confronted with many configuration
parameters.

Tillmann and de Halleux [12] developed the Pex tool which generates inputs for pa-
rameterized tests based on program analysis. They integrated their tool into Visual Studio,
enabling the developer to generate and execute the unit tests by right-clicking on the
parameterized unit test. The tool presents the generated inputs and corresponding test
results in a new window as a simple table.

2.7.3 Interactive Test Generation
The idea of connecting the developer closer with the test generation is also realized in
Interactive Search-Based Software Testing (ISBST). In the concept of Marculescu et al. [77],
domain experts decide the importance of different components in the fitness function
leading the automatic optimization of the test cases. The interaction happens during the
search process, where in defined moments the expert evaluates the current candidate test
cases and adapts the fitness function for the next round of test generation. When compared
to manual testing, ISBST could find different test cases and execute behavior previously
not considered by developers, similar to what our participants reported about TestCube
(O 45). Marculescu et al. also investigated the mental workload of developers using ISBST
compared to manually writing test cases. They did see a higher load and explain it through
the distance from the developer’s interaction with the fitness function to the outcome of
the search process. Similarly, we saw during our interviews that the developers tried to
retrace the generation of the test cases, strengthening the choice to perform only small
edits during the amplification to make the process easier to retrace. After transferring
their approach to industry [78], Marculescu et al. point out the need for ISBST and other
automated test systems to effectively communicate their results to their users. Our work

10In the current version the user only has to provide the path to their Java 8 installation and their Maven Home.

2

44 2 Developer-Centric Test Amplification

addresses this by prototyping a developer-centric test exploration tool and eliciting the
key factors to make such tools suited to be used for test amplification.

2.8 Conclusion and Future Work
With this chapter, we are setting a step towards test amplification that is centered around
the developer and their needs. Based on reported issues with current state-of-the-art
tools, we devised design intentions for a developer-centric test amplification approach
that aims to generate test cases that will be taken over into the manually maintained test
suite. We used these intentions to adapt DSpot‘s test amplification and create TestCube , a
powerful test exploration plugin for IntelliJ. With the help of these tools, we interviewed 16
software developers from a variety of backgrounds and collected detailed insights on how
the amplified test cases and the exploration tool should be adapted to best fit their needs.
Through evaluating the information sought during the test exploration, as well as the value
test amplification brings to developers, we guide future tool developers on what they should
bring forward in their upcoming, developer-centric test generation tools. We summarized
our observations and results into two recommendations: Tool makers should consider
the interaction of the developers with the amplified test cases and provide a targeted and
integrated test exploration tool. If taking over the test cases into the maintained test suite
is the declared goal, the understandability of the amplified test cases should be prioritized
over optimizing the coverage of the test suite.

In short, we contribute:

• two recommendations on how to design developer-centric test amplification tools

• a structured overview of the key factors to make amplified tests as well as test
exploration tools suited for developer-centric test amplification

• a refined, developer-centric test amplification approach, based on the DSpot test
amplification

• a developer-oriented test exploration plugin for the IntelliJ IDE

Going forward we want to understand the different aspects of developer-centric test
amplification in more depth. We want to look into generating meaningful identifiers fast
enough, ranking test cases according to their relevance to the developer, and providing them
information such as runtime or coverage when they look for it, but without overwhelming
them. Our tools will dive deeper into their day-to-day development, for example by helping
them incrementally generate test cases for new or untested classes. We want to give them
more power to direct the amplification and receive test cases that cover code or scenarios
they are interested in, while also providing them with subtle, helpful recommendations
before they realize they need another test case. Our vision is to build tools and methods
that empower developers to create better test suites with less effort, while they are at the
steering wheel deciding over, leading, and benefiting from our automatic test amplification.

Acknowledgements We would like to thank the participants of our study for the
valuable feedback on our work. This work was sponsored by the Dutch science foundation
NWO through the Vici “TestShift” project (No. VI.C.182.032).

3

45

3
How Does This New

Developer Test Fit In?
A Visualization to

Understand Amplified
Test Cases

Developer testing, the practice of software engineers programmatically checking that their own

components behave as they expect, has become the norm in today’s software projects. With the

constantly growing size and complexity of software projects and with the rise of automated test

generation tools, understanding a test case is becoming more and more important compared

to writing test cases from scratch.

This holds especially in the area of developer-centric test amplification, where a tool automati-

cally generates new test cases to improve a developer-maintained test suite. To investigate how

visualization can help developers understand and judge test cases, we present the TestImpact-

Graph, a visualization of the call tree and coverage impact of a JUnit test case proposed for

amplification. It empowers the developer to drill down into the behavior of a test case, as well

as providing them a clear view on how the proposed test case contributes to the coverage of the

overall test suite. In a think-aloud study we investigate which information developers seek

from the TestImpactGraph, how its features can support them in accessing this information,

and observations regarding the coverage impact of test cases. We infer ten actionable rec-

ommendations on how developer tests can be visualized to help developers understand their

behavior and impact.

This chapter is based on C. Brandt and A. Zaidman. How Does This New Developer Test Fit In? A Visualization to

Understand Amplified Test Cases, Working Conference on Software Visualization (VISSOFT), 2022 [53].

3

46 3 A Visualization to Understand Amplified Test Cases

D eveloper tests—xUnit test programs which developers use to check the behavior of
their code [3]—have become a cornerstone in assuring the quality of today’s software

systems [8]. As test suites are growing in number and size, understanding test cases one has
not written themselves is becoming more and more important, for example, (a) when trying
to understand a failing test [35], (b) when using developer tests as a form of executable
documentation [39, 40, 58], (c) when test cases are submitted for code review [59], or (d)
when determining whether to add an automatically generated test case to the test suite,
e.g., checking whether the captured behavior is correct [11, 45], [Chapter 2].

Point (d) is especially important in the area of developer-centric test amplification [Chap-
ter 2]. Test amplification is the process of improving an existing test suite with the help of
automated tooling [42], in our case automatically generating new test cases that strengthen
a manually written test suite. In developer-centric test amplification the goal is to partially
relieve the developer’s effort in writing test cases by generating ones that the developer
subsequently takes over into their maintained test suite [Chapter 2]. In this process, it is
important that the developer understands the new test cases, and subsequently accepts or
rejects them based on their understanding of the added value. We want to illustrate this
with an example:

Sara is a software developer who wants to improve her test suite with
the help of an automated tool. The tool that she uses generates a few new
test cases that supposedly improve the coverage of her test suite. Next, Sara
browses through these test cases to determine whether they make sense and
test behavior that is correct and relevant for the software under test. She
does not only want to understand what the test case does, but also how it
improves her current test suite. Even though the tool tells her in which
lines new instructions are covered, she has to click and search through the
called methods one by one to understand how the test case reaches these new
instructions. Sara wishes that there was an easier, less time-intense way to
understand the test cases.

To help developers such as Sara explore, understand, and judge test cases that amplify
an existing test suite, this chapter presents the TestImpactGraph. It enables developers to
drill down into the methods called by a test case without having to jump from file to file
and risk loosing their mental context. A clear indication of where the test case contributes
additional code coverage, helps the user judge whether including the test case improves
their test suite.

With the help of the TestImpactGraph we conduct a think-aloud [79] study to inves-
tigate what software developers expect from such a visualization of developer tests. In
this chapter, we present our results, focusing on the information developers seek from the
TestImpactGraph, features that help developers access this information and observations
related to test coverage that arise from inspecting a test case through the TestImpact-
Graph. We discuss how the TestImpactGraph could be applied in further scenarios, like
inspecting a proposed test from a pull request, and give ten actionable recommendations on
how tools should visualize the behavior and impact of developer tests to aid the software
developers exploring and understanding them.

3.1
D
eveloper-Centric

Test
A
mplification

3

47
Test

 public void modifyAnnotations_4() throws Exception {

 ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

 builder.annotations.remove(1);

 ParameterSpec parameterSpec = builder.build();

 Truth.assertThat(((ParameterSpec) (parameterSpec)).toString()).isEqualTo("@java.lang.Override int foo");

com.squareup.javapoet.ParameterSpec

 @Override public String toString() {

 StringBuilder out = new StringBuilder();

 try {

 CodeWriter codeWriter = new CodeWriter(out);

 emit(codeWriter, false);

 return out.toString();

 } catch (IOException e) {

 throw new AssertionError();

 }

com.squareup.javapoet.ParameterSpec

 void emit(CodeWriter codeWriter, boolean varargs) throws IOException {

 codeWriter.emitAnnotations(annotations, true);

 codeWriter.emitModifiers(modifiers);

 if (varargs) {

 TypeName.asArray(type).emit(codeWriter, true);

 } else {

 type.emit(codeWriter);

 }

 codeWriter.emit(" $L", name);

com.squareup.javapoet.CodeWriter

 public void emitAnnotations(List<annotationspec> annotations, boolean inline) throws IOException {

 for (AnnotationSpec annotationSpec : annotations) {

 annotationSpec.emit(this, inline);

 emit(inline ? " " : "\n");

 }

Figure 3.1: An example TestImpactGraph, visualizing the second test case in our study.

Test

 public void modifyAnnotations_5() throws Exception {

 ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

 AnnotationSpec annotationSpec = builder.annotations.remove(1);

 Truth.assertThat(((AnnotationSpec) (annotationSpec)).toString()).isEqualTo("@java.lang.SuppressWarnings");

com.squareup.javapoet.AnnotationSpec

 @Override public String toString() {

 StringBuilder out = new StringBuilder();

 try {

 CodeWriter codeWriter = new CodeWriter(out);

 codeWriter.emit("$L", this);

 return out.toString();

 } catch (IOException e) {

 throw new AssertionError();

 }

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(String format, Object... args) throws IOException {

 return emit(CodeBlock.of(format, args));

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(CodeBlock codeBlock) throws IOException {

 return emit(codeBlock, false);

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(CodeBlock codeBlock, boolean ensureTrailingNewline) throws IOException {

 int a = 0;

 ClassName deferredTypeName = null; // used by "import static" logic

 ListIterator

 while (partIterator.hasNext()) {

 String part = partIterator.next();

 switch (part) {

 case "$L":

 emitLiteral(codeBlock.args.get(a++));

 break;

 case "$N":

 emitAndIndent((String) codeBlock.args.get(a++));

 break;

 case "$S":

 String string = (String) codeBlock.args.get(a++);

 // Emit null as a literal null: no quotes.

 emitAndIndent(string != null

 ? stringLiteralWithDoubleQuotes(string, indent)

 : "null");

 break;

 case "$T":

 TypeName typeName = (TypeName) codeBlock.args.get(a++);

 // defer "typeName.emit(this)" if next format part will be handled by the default case

 if (typeName instanceof ClassName && partIterator.hasNext()) {

 if (!codeBlock.formatParts.get(partIterator.nextIndex()).startsWith("$")) {

 ClassName candidate = (ClassName) typeName;

 if (staticImportClassNames.contains(candidate.canonicalName)) {

 checkState(deferredTypeName == null, "pending type for static import?!");

 deferredTypeName = candidate;

 break;

 }

 }

 }

 typeName.emit(this);

 break;

 case "$$":

 emitAndIndent("$");

 break;

 case "$>":

 indent();

 break;

 case "$<":

 unindent();

 break;

 case "$[":

 checkState(statementLine == -1, "statement enter $[followed by statement enter $[");

 statementLine = 0;

 break;

 case "$]":

 checkState(statementLine != -1, "statement exit $] has no matching statement enter $[");

 if (statementLine > 0) {

 unindent(2); // End a multi-line statement. Decrease the indentation level.

 }

 statementLine = -1;

 break;

 case "$W":

 out.wrappingSpace(indentLevel + 2);

 break;

 case "$Z":

 out.zeroWidthSpace(indentLevel + 2);

 break;

 default:

 // handle deferred type

 if (deferredTypeName != null) {

 if (part.startsWith(".")) {

 if (emitStaticImportMember(deferredTypeName.canonicalName, part)) {

 // okay, static import hit and all was emitted, so clean-up and jump to next part

 deferredTypeName = null;

 break;

 }

 }

 deferredTypeName.emit(this);

 deferredTypeName = null;

 }

 emitAndIndent(part);

 break;

 }

 }

 if (ensureTrailingNewline && out.lastChar() != '\n') {

 emit("\n");

 }

 return this;

com.squareup.javapoet.CodeWriter

 private void emitLiteral(Object o) throws IOException {

 if (o instanceof TypeSpec) {

 TypeSpec typeSpec = (TypeSpec) o;

 typeSpec.emit(this, null, Collections.emptySet());

 } else if (o instanceof AnnotationSpec) {

 AnnotationSpec annotationSpec = (AnnotationSpec) o;

 annotationSpec.emit(this, true);

 } else if (o instanceof CodeBlock) {

 CodeBlock codeBlock = (CodeBlock) o;

 emit(codeBlock);

 } else {

 emitAndIndent(String.valueOf(o));

 }

com.squareup.javapoet.ClassName

 @Override CodeWriter emit(CodeWriter out) throws IOException {

 boolean charsEmitted = false;

 for (ClassName className : enclosingClasses()) {

 String simpleName;

 if (charsEmitted) {

 // We've already emitted an enclosing class. Emit as we go.

 out.emit(".");

 simpleName = className.simpleName;

 } else if (className.isAnnotated() || className == this) {

 // We encountered the first enclosing class that must be emitted.

 String qualifiedName = out.lookupName(className);

 int dot = qualifiedName.lastIndexOf('.');

 if (dot != -1) {

 out.emitAndIndent(qualifiedName.substring(0, dot + 1));

 simpleName = qualifiedName.substring(dot + 1);

 charsEmitted = true;

 } else {

 simpleName = qualifiedName;

 }

 } else {

 // Don't emit this enclosing type. Keep going so we can be more precise.

 continue;

 }

 if (className.isAnnotated()) {

 if (charsEmitted) out.emit(" ");

 className.emitAnnotations(out);

 }

 out.emit(simpleName);

 charsEmitted = true;

 }

 return out;

Figure 3.2: The scattered coverage highlights of the TestImpactGraph for the third test case in our study. To show more within the figure, we rearranged the first four
nodes and cropped the fifth node.

3

48 3 A Visualization to Understand Amplified Test Cases

3.1 Developer-Centric Test Amplification
This work builds upon or idea of developer-centric test amplification which we introduced
in Chapter 2. To generate test cases that are accepted by developers into their manually
maintained test suite, we adapted Danglot et. al.’s [13] test amplification approach to
produce simple, focused new test cases that improve the instruction coverage of a test suite.
In addition, we prototyped a test exploration tool which facilitates the interaction between
the developer and the automatic generation tool. The process of using a test exploration
tool is illustrated in Figure 1.3. We conducted semi-structured interviews to uncover what
factors are important for their approach and the test exploration tool to be successful. They
especially focused which information the developers looked for when judging whether it
is worth to accept a test case.

Two key concerns for the study participants were the behavior and intent of the test
case: What does it (aim to) test? Likewise, they wanted to know the test case’s impact on the
coverage of the test suite. During the interviews, the authors observed that the participants
used the newly covered lines to infer the intent of the test case: The instructions that only
the new test case covers must be what the test case is testing. In some cases, the methods
with new coverage were not called directly by the test case, but only indirectly through
changes in the input to other methods. The developers struggled to connect these test
cases to the coverage impact they provided.

To augment this central interaction in developer-centric test amplification, we aim
to develop a visualization that supports developers when inspecting the behavior and
coverage of an amplified test case. The goal of this visualization is to:

• connect a test case to the methods it is executing,

• present which parts of the code are covered only by this test case, and with that

• effectively let the developer understand the behavior, intent and coverage of the test
case.

Overall, the visualization could be part of our proposed test exploration tool, serving as
one of several components that help the developers browse and judge amplified test cases
to decide which ones to take over into their test suite.

3.2 The Test Impact Graph
In this section, we present the design of the TestImpactGraph, a visualization that supports
developers in understanding the behavior and the coverage impact of a developer test. The
graph consists of nodes, which represent the test case and the methods under test, as well
as edges which represent method calls. The default layout helps developers directly focus
on the additional coverage a test provides, while the interactivity lets them explore the
behavior of the test case. Figure 3.1 shows an example of a TestImpactGraph.

3.2.1 Method Nodes
Each method, including the developer test which is visualized by the TestImpactGraph, is
presented as a node. A node consists of the fully qualified class name, the signature of the

3.2 The Test Impact Graph

3

49

method and its source code. Figure 3.3 shows an example of a node presenting a method
under test. The background of each source code line is colored depending on its coverage:

• grey: Not covered by this test case or belongs to the test code.

• dark green: Covered by this test case and already by another test case.

• bright green: Contains instructions only covered by this test case, which we call
additional coverage.

With the term additional coverage we refer to those code elements that are covered
by the inspected test case, but not by the other tests in the test suite.

Test

 public void modifyAnnotations_5() throws Exception {

 ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

 AnnotationSpec annotationSpec = builder.annotations.remove(1);

 Truth.assertThat(((AnnotationSpec) (annotationSpec)).toString()).isEqualTo("@java.lang.SuppressWarnings");

com.squareup.javapoet.AnnotationSpec

 @Override public String toString() {

 StringBuilder out = new StringBuilder();

 try {

 CodeWriter codeWriter = new CodeWriter(out);

 codeWriter.emit("$L", this);

 return out.toString();

 } catch (IOException e) {

 throw new AssertionError();

 }

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(String format, Object... args) throws IOException {

 return emit(CodeBlock.of(format, args));

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(CodeBlock codeBlock) throws IOException {

 return emit(codeBlock, false);

com.squareup.javapoet.CodeWriter

 public CodeWriter emit(CodeBlock codeBlock, boolean ensureTrailingNewline) throws IOException {

 int a = 0;

 ClassName deferredTypeName = null; // used by "import static" logic

 ListIterator

 while (partIterator.hasNext()) {

 String part = partIterator.next();

 switch (part) {

 case "$L":

 emitLiteral(codeBlock.args.get(a++));

 break;

 case "$N":

 emitAndIndent((String) codeBlock.args.get(a++));

 break;

 case "$S":

 String string = (String) codeBlock.args.get(a++);

 // Emit null as a literal null: no quotes.

 emitAndIndent(string != null

 ? stringLiteralWithDoubleQuotes(string, indent)

 : "null");

 break;

 case "$T":

 TypeName typeName = (TypeName) codeBlock.args.get(a++);

 // defer "typeName.emit(this)" if next format part will be handled by the default case

 if (typeName instanceof ClassName && partIterator.hasNext()) {

 if (!codeBlock.formatParts.get(partIterator.nextIndex()).startsWith("$")) {

 ClassName candidate = (ClassName) typeName;

 if (staticImportClassNames.contains(candidate.canonicalName)) {

 checkState(deferredTypeName == null, "pending type for static import?!");

 deferredTypeName = candidate;

 break;

 }

 }

 }

 typeName.emit(this);

 break;

 case "$$":

 emitAndIndent("$");

 break;

 case "$>":

 indent();

 break;

 case "$<":

 unindent();

 break;

 case "$[":

 checkState(statementLine == -1, "statement enter $[followed by statement enter $[");

 statementLine = 0;

 break;

 case "$]":

 checkState(statementLine != -1, "statement exit $] has no matching statement enter $[");

 if (statementLine > 0) {

 unindent(2); // End a multi-line statement. Decrease the indentation level.

 }

 statementLine = -1;

 break;

 case "$W":

 out.wrappingSpace(indentLevel + 2);

 break;

 case "$Z":

 out.zeroWidthSpace(indentLevel + 2);

 break;

 default:

 // handle deferred type

 if (deferredTypeName != null) {

 if (part.startsWith(".")) {

 if (emitStaticImportMember(deferredTypeName.canonicalName, part)) {

 // okay, static import hit and all was emitted, so clean-up and jump to next part

 deferredTypeName = null;

 break;

 }

 }

 deferredTypeName.emit(this);

 deferredTypeName = null;

 }

 emitAndIndent(part);

 break;

 }

 }

 if (ensureTrailingNewline && out.lastChar() != '\n') {

 emit("\n");

 }

 return this;

com.squareup.javapoet.CodeWriter

 private void emitLiteral(Object o) throws IOException {

 if (o instanceof TypeSpec) {

 TypeSpec typeSpec = (TypeSpec) o;

 typeSpec.emit(this, null, Collections.emptySet());

 } else if (o instanceof AnnotationSpec) {

 AnnotationSpec annotationSpec = (AnnotationSpec) o;

 annotationSpec.emit(this, true);

 } else if (o instanceof CodeBlock) {

 CodeBlock codeBlock = (CodeBlock) o;

 emit(codeBlock);

 } else {

 emitAndIndent(String.valueOf(o));

 }

com.squareup.javapoet.ClassName

 @Override CodeWriter emit(CodeWriter out) throws IOException {

 boolean charsEmitted = false;

 for (ClassName className : enclosingClasses()) {

 String simpleName;

 if (charsEmitted) {

 // We've already emitted an enclosing class. Emit as we go.

 out.emit(".");

 simpleName = className.simpleName;

 } else if (className.isAnnotated() || className == this) {

 // We encountered the first enclosing class that must be emitted.

 String qualifiedName = out.lookupName(className);

 int dot = qualifiedName.lastIndexOf('.');

 if (dot != -1) {

 out.emitAndIndent(qualifiedName.substring(0, dot + 1));

 simpleName = qualifiedName.substring(dot + 1);

 charsEmitted = true;

 } else {

 simpleName = qualifiedName;

 }

 } else {

 // Don't emit this enclosing type. Keep going so we can be more precise.

 continue;

 }

 if (className.isAnnotated()) {

 if (charsEmitted) out.emit(" ");

 className.emitAnnotations(out);

 }

 out.emit(simpleName);

 charsEmitted = true;

 }

 return out;

Figure 3.3: A node in the TestImpactGraph.

3.2.2 Call Edges
For each line with one or more method calls, the TestImpactGraph shows a small plus
marker at the end. When the user clicks on this marker, they expand the edges connected
to that line of code, showing all method nodes called by that line. The marker transforms
into a minus icon, which lets the user collapse this part of the call tree again.

Apart from opening and closing call edges, the user can freely rearrange nodes, as well
as drag and zoom the canvas to explore the TestImpactGraph. Initially, the nodes are
presented in a hierarchical tree layout from left to right, with the inspected developer test
as the root on the left.

3.2.3 Default Layout
As it is common for developer tests to execute a not-small number of methods [43, 44], the
visualization we describe up until now can get quite large—and therefore overwhelming
for the user. To clarify how the inspected test case improves the existing test suite, we

3

50 3 A Visualization to Understand Amplified Test Cases

want to let the developer focus on what distinguishes the test case from the rest of the test
suite. We use additional coverage for this. By default, the TestImpactGraph shows all
methods under test that contain instructions that are covered by the inspected test case,
but are not covered by the rest of the test suite. To give context on how these methods are
called by the developer test, we also show all the method nodes on the call chains from the
developer test to the methods with additional coverage. Figure 3.1 shows and example of
this: the methods leading to the additional coverage are visible, while all other edges are
collapsed.

3.2.4 Design Rationale
The design of the TestImpactGraph is based on various well-established visualization
metaphors. To ease the adoption by software developers, we apply as many familiar
visual components as possible and strive for a simple design that can fit within an IDE
environment.

From related works, we know that developers who inspect a test case during code
review are interested in the code under test [59]. They rely on source code to understand
the system under test [28, 80] and should be supported while building up the mental context
between test code and code under test [69]. This is why we present the developer test
alongside the code under test.

We choose to directly show source code to the user, as this provides the highest code
proximity [81]. In our interviews described in Chapter 2, we observed the developers
navigating through the code using “jump-to-definition”, a common strategy during code
comprehension [82–85]. To let the developers keep the mental context of the methods
they viewed, we show methods as rectangular nodes on a plane and use arrows to show
calling relationships, similar to the Code Bubbles metaphor [86]. Just as Bragdon et al.
observed with Code Bubbles, we want to support developers in “understanding a call graph

encompassing a handful of functions” [87].
To visualize code coverage in an intuitively understandable way, we use the established

notion of lines highlighted in green [88]. As many developer tests execute several meth-
ods [43, 44], presenting this large amount of information at once could be overwhelming
for the user [81]. This is why we provide a default view focused on the most relevant
methods—the ones with new coverage—and include interactive features [80, 89], letting
the user zoom and pan to get an overview or a detailed look on items of interest. Markers
to open and close branches indicate options for further exploration [81, 90], enabling the
developer to access more details on demand or to filter out uninteresting elements.

3.2.5 Implementation
We implemented the TestImpactGraph as an extension to the TestCube plugin1, which
generates JUnit tests with the help of the test amplification tool DSpot2. We collect the
method calls to build the TestImpactGraph based on a static analysis, using the IntelliJ
PSI support3. The coverage information is provided by Jacoco4 and obtained by DSpot
1https://github.com/TestShiftProject/test-cube/tree/v1.0.3-tig.1
2https://github.com/STAMP-project/dspot
3https://plugins.jetbrains.com/docs/intellij/psi.html
4https://www.jacoco.org/

3.3 Think-Aloud Study

3

51

during the test generation. The visualization itself is implemented with the G6 framework
by antv5 and can be found on GitHub6 together with the exemplary graphs we used for
our evaluation.

3.3 Think-Aloud Study
To understand the current state of the TestImpactGraph and collect feedback on what to
improve and develop further to effectively help developers explore and understand test
cases, we perform a preliminary think-aloud study. We aim to answer which information
developers seek while they explore a proposed test case and judge whether it improves
their current test suite (RQ1). Further, we want to know which existing and potential
future features of the TestImpactGraph help developers effectively and efficiently ac-
cess the information they are seeking (RQ2). Finally, we conjecture that the novel view
TestImpactGraph provides at developer tests, will raise observations reflecting on the
(additional) coverage of test cases (RQ3).

In summary, our preliminary think-aloud study intends to answer the following research
questions:

RQ1: Which information do developers seek from the TestImpactGraph?

RQ2: Which features of the TestImpactGraph help developers access this informa-
tion?

RQ3: What observations related to test coverage arise when inspecting a developer
test through the TestImpactGraph?

3.3.1 Study Design
In our think-aloud study, we invite participants familiar with Java to inspect example test
cases with the TestImpactGraph.

During the study, we go through three example test cases with each participant. The
examples are amplified test cases which were generated by the test amplification plugin
TestCube7 to improve the test suite of the project javapoet8. We select this project for our
study as we expect our participants to be familiar with its domain: generating Java source
files. We aim to broadly explore the capabilities of the TestImpactGraph and therefore
select three proposed test cases that show different patterns in terms of their additional
coverage:

• The first proposed test case covers additional instructions in several lines, but not all
lines, of amethod that is directly called from the developer test. ItsTestImpactGraph
is shown in Figure 3.4.

5https://g6.antv.vision/en
6https://github.com/TestShiftProject/test-impact-graph/tree/v0.1.0
7https://github.com/TestShiftProject/test-cube
8https://github.com/square/javapoet

3

52 3 A Visualization to Understand Amplified Test Cases

• The second proposed test case (Figure 3.1) covers additional lines in a method that is
three calls away from the developer test.

• The third proposed test case has the most complex additional coverage pattern. It
covers additional instructions in a directly called method, but also several method
calls further away and on more than one branch of the TestImpactGraph. The
TestImpactGraph in Figure 3.2 shows how scattered the additional coverage of our
third test case is.

All three of these example test cases can be found on GitHub9, their TestImpactGraphs
can be explored as part of our replication package10.

Generating meaningful names for automatically generated test cases and the variables
used in them is a challenging and actively researched topic [31, 32, 34]. As test names and
variable identifiers play a big role in understanding code [91], we do not want our study to
be influenced by the quality of the automatically generated names. Therefore, we choose to
simplify the test names to the name of the original test case and a number and to simplify
the variable names to lowercase variants of their class.

Test

 public void modifyAnnotations_3() throws Exception {

 Object object = new Object();

 ParameterSpec.Builder builder = ParameterSpec.builder(int.class, "foo").addAnnotation(Override.class).addAnnotation(SuppressWarnings.class);

 AnnotationSpec annotationSpec = builder.annotations.remove(1);

 boolean booleanValue = annotationSpec.equals(object);

 Truth.assertThat(booleanValue).isFalse();

com.squareup.javapoet.AnnotationSpec

 @Override public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null) return false;

 if (getClass() != o.getClass()) return false;

 return toString().equals(o.toString());

Figure 3.4: The TestImpactGraph for the first test case in our study.

3.3.2 Study Execution
We used convenience sampling to recruit our participants: Four PhD Students from the
field of computer science and one industrial software developer, all with two to five years
of experience in software development and testing. They were unfamiliar with the example
project javapoet. Before each session, we asked the participant for informed consent
according to the ethics guidelines of our university.

Then, we gave a short introduction about the aim and the features of the TestImpact-
Graph. The TestImpactGraph is built to help developers understand an amplified test
case, and especially the value it adds to the existing test suite, similarly to Sara in Chapter 3.
This is why we ask the participants to answer the following task for each test case: “What

scenario is newly covered by this test case?”.
While they browse through the visualization, we ask them to think aloud about their

expectations and experiences. They stopped thinking aloud often during the experiment,
as they sunk into understanding the code in front of them. After stimulating them with
questions, they provided us with rich insights about the TestImpactGraph.

After the sessions, we analyzed the observer’s notes using open and axial coding [66].
The results presented in Sections 3.4, 3.5 and 3.6 are grouped along the resulting axial
9L.68, L.92, and L.199 in https://github.com/lacinoire/javapoet/blob/
2cbb3084c15a209d28fc8c5fd7472dd695c22591/src/test/java/com/squareup/javapoet/generated/
ParameterSpecTest.java

10https://doi.org/10.5281/zenodo.6644723

https://github.com/lacinoire/javapoet/blob/2cbb3084c15a209d28fc8c5fd7472dd695c22591/src/test/java/com/squareup/javapoet/generated/ParameterSpecTest.java
https://github.com/lacinoire/javapoet/blob/2cbb3084c15a209d28fc8c5fd7472dd695c22591/src/test/java/com/squareup/javapoet/generated/ParameterSpecTest.java
https://github.com/lacinoire/javapoet/blob/2cbb3084c15a209d28fc8c5fd7472dd695c22591/src/test/java/com/squareup/javapoet/generated/ParameterSpecTest.java

3.4 RQ1: Which Information Do Developers Seek From the TestImpactGraph?

3

53

codes. All codes and groups, as well as which participant mentioned them, can be found in
our replication package.

3.3.3 General Observations
The participants liked interacting with the TestImpactGraph and appreciated a tool that
lets them dig deep into the behavior of one test case. Overall, most of them intuitively
understood the different components of our visualization: method nodes, call edges, the
coverage highlights, and the default view of all additionally covered lines. One participant
reported that such a visualization would let them be more confident in automatically
generated code because they could retrace its behavior.

3.4 RQ1: Which Information Do Developers Seek
From the TestImpactGraph?

In this section, we discuss our observations related to the kinds of information our partici-
pants sought while inspecting the developer tests to answer which additional scenario is
covered by them.

3.4.1 What Does It Do? Understanding the Test Case
From observing our participants, we learned that different developers focus on different
parts of a test case or its execution when they explore the test case and determine its
behavior or its impact:

• Test names: Several participants based their judgment on the names of the test class
or the test case. As we simplified the variable names (see Section 3.3.1) these could
not be used as a source of additional information.

• Test code: Several times throughout the study, the participants studied the lines of
code of the test case or the methods under test to understand their behavior or deter-
mine the values of test objects. This connects to existing evidence that understanding
the setup and input of a test case is central for developer comprehension [92].

• Method calls: The participants used the branches of the graph to inspect the
behavior of statements that call methods by drilling deeper into the behavior of these
methods.

• Additional coverage: Through the bright green highlighting and the initial layout
showing all lines with additional coverage, some participants focused their analysis
on these lines. They analyzed the proposed test case to infer how its statements and
the methods they call lead to the execution of the highlighted lines.

• Inner-method control flow: Some participants tried to retrace the control flow in-
side of themethods under test. Theymade use of the coverage highlights to determine
which lines were executed and inferred the outcome of conditional statements.

• Actual values: Our participants indicated that access to the actual values of variables
and method parameters would help them retrace the behavior of the test execution

3

54 3 A Visualization to Understand Amplified Test Cases

even better, similar to debugging a test failure [28]. During our study, the participants
manually went through the code of the test case and the methods under test to infer
the actual values of variables.

• Natural language explanation: A participant wished that the tool should give a
textual, more abstract description of the new input provided to the method under
test, compared to the input other tests provide to the same method, e.g., “Other
tests cover this method with an empty list, this test additionally executes it with a
non-empty list”.

We saw that different developers take different approaches to understand a developer
test. A suitable visualization should provide information that supports many of these
approaches.

Recommendation 1A

A developer test visualization should provide access to the wide variety of in-
formation sought by developers to understand the inspected test case. Under
this fall the test name and the source code, the execution flow between and inside
of methods, the values of variables and parameters, as well as the coverage and the
high-level behavior of the test case.

3.4.2 Should I Test This? Provide Scope of Where Code Is From
Surprisingly, many of our participants used the TestImpactGraph in a very similar way to
common code coverage tools, a popular means of developers to inspire new test cases [28].
They inspected which lines were covered by the test, but also focused on the lines not
covered. Several of them pointed out grey lines, which they assumed to be not covered
and stated that they would write additional tests for them.

In this context, it is important that the visualization does not mislead the developers, as
the grey lines in the TestImpactGraph are simply not covered by the proposed test case.

Recommendation 1B

A developer test visualization that presents coverage information to developers should
be careful when displaying code as not covered, as developers might use the
visualization to identify code to cover in additional test cases.

In addition, some participants asked if certain methods were part of a library or the
code of the project itself. They considered it relevant to cover methods of the project itself,
but not code that is part of a library.

Similar to this, one participant wished that the test method, i.e., the JUnit method
which defines the developer test, as well as any helper methods are visually distinguished
from the system code. Their reasoning was that while test helper methods are executed by
the test case, they do not need to be covered and would not contribute to describing the
additionally tested scenario.

3.5 RQ2: Which Features of the TestImpactGraph Help Developers Access This Information?

3

55

Recommendation 1C

A developer test visualization should distinguish the origin of presented code
pieces: the system under test, dependencies, or the test code. This helps developers
judge if a certain piece of code should be tested and if the coverage of this code is
relevant for the strength of the test suite.

3.4.3 Who Tests This Already? Support Exploring Other Tests
When presented with dark green highlighted lines in the methods under test, i.e., lines that
are already covered by other tests in the test suite, several participants wondered which

other test case was executing these lines already. They wished for functionality to inspect
for each line the set of test cases that covers this line, a kind of line-based code-to-test
traceability [93].

There were several reasons for the different participants to seek this kind of reverse
coverage information [94]: looking at and understanding the other test cases which execute
the same lines of code could help the users understand the developer test they currently
inspect. When the dark green lines appeared in combination with bright green ones,
i.e., indicating that the bright green code is only covered by the inspected test case, the
developers wondered about the difference between the test case they currently inspect
and the ones already covering the dark green lines. They were interested in why the
current test case executed the additional instructions, why the other test cases did not. A
different consideration was to minimize either the current or the other test cases, to not
unnecessarily cover code parts twice. Similarly, Panichella et al. [35] found that developers
would want to be notified if a part of the behavior of a generated test case is already checked
in a previous method.

Recommendation 1D

A developer test visualization which indicates that code parts are already covered by
another test, should provide information on which other tests already cover a
line under test. This can help the developer to take refactoring decisions to improve
the focus of their test cases.

3.5 RQ2: Which Features of the TestImpactGraph
Help Developers Access This Information?

To answer our second research question, we collected observations and feedback from the
participants to gaugewhich existing and potential features help them access the information
they seek through the TestImpactGraph.

3.5.1 Code Nodes: As Close to the IDE as Possible
We received several points of feedback concerning the method nodes in the TestImpact-
Graph. The participants inspected the statements in several method nodes closely, e.g., to
reconstruct the behavior of a method or determine the value of an object under test. When
presenting source code, the users expected syntax highlighting as it would help them “spot

3

56 3 A Visualization to Understand Amplified Test Cases

variables being reused throughout the method”. The full signatures of the methods under
test helped them to reconstruct the behavior of a method and the values returned. As
our participants were unfamiliar with the example project from which they inspected test
cases, they wished for access to the documentation of several methods they encountered
in the TestImpactGraph.

Recommendation 2A

Developers expect a direct presentation of source code to be as similar as possible
to their familiar IDE environment. In our study, this included syntax highlighting,
the whole signature and source code of the method and access to its documentation.

3.5.2 Default View: Provide Confidence to See Everything
Relevant

Showing all code with additionally covered lines right away was a big success with the
developers that participated in our study. They were glad not to have to search through the
graph for more newly covered lines and that they could focus on what is presented at the
beginning. After exploring the graph and opening many branches, a participant wished
for an easy possibility to return to the default view, so they could re-focus on the relevant
code paths. Others proposed to highlight the methods leading to additional coverage, so
they could be distinguished even while other nodes and branches are opened.

Recommendation 2B

A developer test visualization should help the developer focus on the central and
unique parts of the execution of a test case. This prevents overwhelming the user
with less relevant behavior details, e.g., details in the methods setting up test objects.

3.5.3 Where Was I? Providing and Keeping Context
Our participants were thankful for the flat visualization of all methods relevant to the
execution of this test case. This let them focus on the methods under test, as well as their
connection, better than in an IDE, where they have to switch back and forth between
source files to inspect the methods under test.

During our evaluation, we saw that it was important to let the developers maintain
their mental context of the nodes visualized on the screen. This includes maintaining the
previous layout when new branches are opened and new methods are inspected, even if it
required manual zooming and panning from the user to see the new nodes.

Recommendation 2C

The layout of the method nodes in a developer test visualization should stay consis-
tent while the developer interacts with the visualization. This lets the user build
up and maintain a mental context between the developer test and the code under test.

3.6 RQ3: What Observations Related to Test Coverage Arise When Inspecting a Developer Test
Through the TestImpactGraph?

3

57

3.5.4 Where Does This Connect? Clarifying Edges
We also learned that the default layout of the graph contributes heavily to the interaction
of the developer with the graph. In the case of our TestImpactGraph prototype, some
call edges were overlapping with each other or partially covered by unrelated method
nodes, meaning the participants had to move the nodes around to identify which code line
was calling which method node. Similarly, there were cases in which the method nodes
overlapped, requiring interaction from the user to make all nodes they found relevant
visible. The participants wished for a clearer layout that does not require their interaction,
giving them more time to focus on the presented test case.

We discuss this and the previous aspects because they confirm existing results from the
field of information visualization. In a study about visualizations for software exploration,
Storey et al. [90] name the reduction of user effort in adjusting interfaces as an important
design element. Guidelines for UML class diagrams [95, 96] recommend to avoid edge
crossings or overlapping nodes, to support users in recognizing the presented objects.

We observed another visualization challenge more specific to the TestImpactGraph.
As the method calls are connected to a particular line, when multiple methods are called
it was difficult to distinguish for a participant which method nodes correspond to which
method call. One participant resorted to comparing the names of the methods, noticing that
this falls short if two have the same name or one method is called, possibly with different
parameter values. One way to address this could be the use of color on the method calls
and edges, similar to the “smart step into” feature of IntelliJ11.

Recommendation 2D

The layout of developer test visualization should show clearly which method call
and method node the ends of an edge connect to and should not require the
interaction of the user to clarify the presented information.

3.6 RQ3: What Observations Related to Test Cov-
erage Arise When Inspecting a Developer Test
Through the TestImpactGraph?

Inspecting test cases through the TestImpactGraph gives the developer the chance to
take a novel look at the behavior and especially the additional coverage of a developer test.
We want to report on a few interesting observations our participants made while using the
TestImpactGraph on the three examples we provided.

3.6.1 Should This Not Already Be Unit-Tested? Deep and Acci-
dental Coverage

As shown in Figure 3.2, our third example shows a rather large TestImpactGraph, because
some of the additionally covered lines are multiple method calls away from the developer
test. Two of our participants noted this and wondered whether these methods should not
11https://www.jetbrains.com/help/idea/stepping-through-the-program.html#smart-step-into Ac-
cessed: June 1st, 2021

https://www.jetbrains.com/help/idea/stepping-through-the-program.html#smart-step-into

3

58 3 A Visualization to Understand Amplified Test Cases

be covered more directly by a unit test, instead of by the more integration-style test they
were inspecting. As there was also a whole new method covered directly through a call
from the developer test, one participant even wondered if these further methods were
covered “accidentally” by a test meant to test the directly called method. The participant
said to not trust this accidental coverage and built their answer to what the test is newly
testing solely on the directly called and newly covered method.

A participant also pointed to similar issues if a method would lead to additional coverage
in several different, unconnected areas of the code under test. This would give them the
impression that it is not clear what the test case is really intending to test.

Recommendation 3A

According to our participants, additional coverage that is several method calls
away could point to a lack of unit testing or be considered accidental. Acci-
dental coverage was deemed less relevant to determine the impact of a test case. We
recommend to further investigate whether such accidental coverage should—and how
it can—be removed from amplified tests or developer test visualizations.

3.6.2 What Is Executed Here? Instruction Coverage Visual-
ized Per Line

As described before, several of our participants approached understanding the methods
under test by going through their statements one by one. Where possible, they made use
of the line highlighting that indicates which lines were executed. However, the common
practice of visualizing instruction coverage as a highlight of a whole line led to confusion
in some cases. In the first example test case (see Figure 3.4), there are three one-line if
statements with return statements in their bodies. All three lines are highlighted in bright
green, i.e., indicating that there were additional instructions covered on these lines. The
participants were confused how all of these return statements could be executed in one
method call.

While there are newly covered instructions on these lines of code—namely the condi-
tions of the if statements—the highlight’s indication that the whole line is executed was
confusing. A participant reflected, that it would be better to indicate that while additional
instructions are covered, not all instructions on these lines are covered by the inspected
test case. They added that this would also depend on the code style of the code under test,
e.g., whether the if and else blocks of a conditional statement are on separate lines from
the conditions.

We made a similar observation in the second example test case (Figure 3.1), where
seemingly a whole new method is covered: all lines in the method are bright green. The
method only consists of a for loop with statements in it. However, our participants
wondered why the statement calling this method was dark green, indicating that it was
already executed by another test case. Upon closer inspection, we determined that the
previous callers executed the method in question with an empty list, therefore the first
instruction of the for loop was executed. In the new, inspected test case, the method in
question was called with a filled list, leading to the execution of the statements in the for
loop, as well as the increment statement in the for loop’s header. A participant noted

3.7 Discussion

3

59

that it would help to indicate that some of the instructions on the header line are already
executed by other test cases.

Recommendation 3B

When instruction coverage is visualized at the line level, it should be indicated whether
instructions on a line were previously covered, and whether there are still
uncovered instructions on a line.

3.7 Discussion
Our exploratory think-aloud study resulted in a range of 10 actionable recommendations
regarding the information developers seek from the TestImpactGraph, features to help
them access this information and observations based on the new view angle on additional
coverage of developer tests. Several of them confirm existing knowledge from information
visualization (2A, 2C, 2D), extend existing intuitions for the area of developer test inspection
(1A, 1C, 2B), and others point to novel challenges special to developer test inspection
(1B, 1D, 3A, 3B). In this section we discuss why our results can also be applied to the
area of test code review, due to the large similarities between inspecting a test case for
amplification and for test review. Furthermore, we illustrate how the TestImpactGraph
can provide insights that lead to a more fine-grained coverage understanding related to
test directness and redundancy.

3.7.1 Test Review
The review of test code during traditional code review has many parallels to the inspection
of proposed test cases during test amplification. In both cases, developers judge whether
a new developer test is adequate and should be included into the test suite. Our results
also show these parallels to previous work on test review by Spadini et al. [59]. Similar
to our observations that developers use the TestImpactGraph as a coverage tool to spot
uncovered lines (Section 3.4.2), a central concern in code review is to understand whether
the test covers all paths [59]. None of our participants asked whether they could inspect
the presented code in their IDE, a typical behavior of developers to gain a complete picture
of the code during test review [59]. Therefore, we hypothesize that if test reviews are
performed inside the TestImpactGraph tool, Spadini et al.’s recommendation to provide
better navigation between the developer test and the code under test would be addressed.

3.7.2 Differential Code Coverage
A tool dedicated to surface coverage changes during code review is Codecov12. It provides
high level, aggregated coverage information about the whole project, but also differential

coverage introduced by a commit or a pull request. Their differential coverage indicates
how much of the code diff is covered an how the change impacts the overall project
coverage. In their source code view13, developers can inspect the code under test enriched
with highlights that show how the coverage of single lines change through the inspected

12https://about.codecov.io/
13https://docs.codecov.io/docs/viewing-source-code

3

60 3 A Visualization to Understand Amplified Test Cases

commit or pull request. While Codecov provides a coverage diff for any kind of code
change, i.e., to the test code and the code under test, the TestImpactGraph focuses on
the addition of one test case, while the code under test stays constant. Furthermore, the
TestImpactGraph is showing the method call connections between the developer test and
the methods under test, letting the developer retrace the execution of the test case. This
addresses an important point in test coverage evolution: helping developers understand
better why a change in the code leads to a change in coverage [97].

When inspecting a test case that is proposed to amplify a test suite, or an added test
case in traditional code review, a tool like Codecov would give quick feedback on how the
test case impacts the coverage of the test suite, while the TestImpactGraph would give
more detailed insights to the developer on where and why the test case impacts the code
coverage.

3.7.3 Refined Coverage Insights
From our observations about already covered code (Recommendation 1D), as well as
deep and accidental coverage (Recommendation 3A), we see a chance for the Test-
ImpactGraph to give developer’s a deeper insight into how their tests cover the code under
test. The reflections of the participants show that coverage could be interpreted as more
than just covered or not covered. Instead, the participants also considered how directly
test cases are covering a specific method. Test directness is important to help developers
pinpoint the fault in the code when a test is failing [38]. It also impacts how well a test
case can serve as documentation of the code under test [43].

Whether these insights lead developers to adapt their test suite to be more direct, will
depend on the needs of the software project and their testing culture, e.g., the relative
value of unit and integration tests for the project. Independent from the testing culture of
a project, the TestImpactGraph can give the developers deeper insight into the coverage
that single test cases contribute, enabling them to take informed decisions about the design
of their test suites.

3.7.4 Relevance of Deep Coverage for Test Descriptions
Current techniques to automatically generate names for unit test cases use, beneath other
information, the names of the methods executed by a test case as basis for the generated
names [32]. The automatic test generation community is moving towards generating
integration tests that check the interaction of multiple classes [98–100], and the amplified
test cases from our study were also integration test that executed several methods. Based
on the feedback we got regarding deep and accidental coverage (Section 3.6.1), the question
becomes whether methods that are executed, but further away from the developer test
in the call chain, are relevant to generate test names that are meaningful for developers.
Similarly, we should investigate, whether or how deep coverage can be used for natural
language test descriptions, such as those generated by Panichella et al. [35] or Roy et
al. [34].

3.7.5 Threats to Validity
In the following, we discuss several threats to the validity of our results.

3.8 Related Work: Test Visualizations

3

61

With regards to construct validity, the amplified test cases we chose for our study might
be favorable for the TestImpactGraph. Long, complex test cases that additionally cover a
large part of the source code would be difficult to inspect with the current design. Similarly,
for simple test cases it might feel unnecessary to use more than the tools available in an
IDE. To mitigate this threat, we picked a variety of test cases that represents the types of
coverage we see when amplifying test suites with TestCube. All the tools we used14, as
well as our experiment data15 are openly available and we encourage others to explore
them to retrace our observations.

We assume a broad target audience for the TestImpactGraph, novices as well as
experienced software developers. However, our participants might not match this audience,
as we used convenience sampling to select participants. The reflective insights about
test directness and accidental coverage might stem from the fact that our participants are
mainly PhD students and therefore more aware about software quality than other software
developers. Future work is needed to investigate how professional experience impacts
developer’s interaction with the TestImpactGraph.

As we used convenience sampling, the researcher and the participants knew each other
personally, however the participants had not been involved in the researcher’s work before
the study. The participants were motivated to participate to support the author’s research
work and could have been biased to give more positive feedback during the study. We
mitigated this threat by emphasizing the value of critical and opinion-rich comments, and
focusing our results on the concrete recommendations rather than ratings of the existing
design.

A threat to the external validity of our study might be the underlying test amplification
approach we used to generate the test cases for our study. The TestCube tool selects which
test cases to propose based on whether they cover additional instructions in the code
under test. One could choose other selection criteria, e.g., whether a new edge case is
checked, which would call for another kind of visualization, e.g., because no additional
instructions are covered. Another threat is the selection of the example project, or the
test cases we inspected. We aimed for a middle-sized project and a variety of test cases
with respect to their coverage characteristics. This lead to a variety of visualization in the
TestImpactGraph, and let us widely explore visualizations from an average Java project.
We do not claim our findings to be applicable to every software project, and their relative
importance will vary depending on the developer interacting with our tool.

3.8 Related Work: Test Visualizations
In this section we present related scientific works in the area of visualizing software test
cases or associated metrics.

Visualizations are used to judge the quality of a whole test suite, visualizing test metrics,
including code coverage, in conjunction with the system under test. Borg et al. [101]
visualize historical test outcomes in a code city of the system under tests. Their goal is
to help identify error-prone components and potential coverage holes, i.e., components
that are not covered enough by the test suite. Balogh et at. [102] extend a different code
14https://github.com/TestShiftProject/test-cube/tree/test-impact-graph, https://github.com/TestShiftProject/test-
impact-graph

15https://doi.org/10.5281/zenodo.6644723

3

62 3 A Visualization to Understand Amplified Test Cases

city framework to visualize test-related metrics together with the components of the
system under test. Perscheid et al. [103] use a variety of tree maps, presenting different
quality aspects of a test suite. They aim to help developers pinpoint untested code and
improve time or memory intensive test cases. Opmanis et al. [104] present a dashboard
that visualizes the test results of large systems, helping managers and quality engineers to
identify the origin of deteriorations or improvements. The TestQ tool by Breugelmans
and Van Rompaey [105] presents a tree-like overview over the structure of a whole test
suite. For a closer inspection, singular test cases are presented as a hierarchical structure of
the test components like fixture and test helpers, annotated with instances of test smells. A
separate window provides an overview over all smells appearing in the test suite and lets
the developer spot very smelly tests. While these visualizations aim to give an overview of
the whole test suite, the TestImpactGraph is geared towards visualizing the execution
of a single test case and visualizing it coverage, focusing on the impact it makes on the
coverage of the whole test suite.

Other approaches visualize the current coverage of a test suite to aid developers in
achieving better coverage. Vanessa Peña Araya [106] proposes Test Blueprints, a hierarchical
visualization of the structure of the code under test in conjunction with how often its
methods are executed by the test suite. Lawrance et al. [88] highlight lines in the code
under test to indicate the existing quality of a test suite and investigate whether this leads
developers to create more effective tests. With a similar goal, Rahmani et al. [107] create
a control flow graph showing the current branch coverage. Among our participants, we
observed a similar, intuitive strive to write additional test cases for lines that were not
marked as covered.

Previous work investigated visualizing the software components, methods or lines that
are executed by a test case or an interaction with the system to aid understanding of the
behavior of the system under test. Cornelissen et al. [108] visualize tests as abstracted
scenario diagrams, Arthur-Jozsef Molnar [109] visualizes the components executed by a
sequence of GUI interactions, and Gestwicki and Jayaraman [110] present the structure
of live object and values as well as method invocations during the execution of a java
program.

The research area of test-to-code traceability is similar to our effort to connect a
developer test to the code it tests. The IDE extension EzUnit by Bouillon et al. [111] creates
links to jump from a test case to the methods under test. Aljawabrah et al. [112, 113]
visualize the connection between unit tests and the code under test with the TCTracVis
tool. Their tools shows traceability links in a hierarchical tree graph in both directions: from
test to code and from code to test. While TCTracVis is built to support different methods
to retrieve traceability links and visualizes the connection of high-level code structures like
classes and methods, the TestImpactGraph relies purely on coverage information and
visualizes the connection of test and code under test on a line granularity. Furthermore,
the TestImpactGraph presents the source code directly to the developers, keeping the
visualization as close as possible to the source code [81].

Vidaure et al. [114] use visualizations to shed light on the internal processes of auto-
mated test generation. Their tool TestEvoViz lets developers examine the process behind a
genetic algorithm to see the impact their configuration has on the test generation. While
the TestImpactGraph also works with automatically generated test cases, its design is in

3.9 Conclusion and Future Work

3

63

principle independent from the specific test generation approach. The TestImpactGraph
steps in after the test cases are generated, with the aim to help the developer inspect one
specific new test case at a time.

3.9 Conclusion and Future Work
In this chapter, we present the TestImpactGraph, a visualization of developer tests to aid
understanding of their behavior and impact. Through an exploratory think-aloud study
we identify a range of ten recommendations for future visualizations of developer tests.

We discuss how the TestImpactGraph can give developers a better context of the
code under test during code review, how it complements differential coverage and how
developers can use it to gain a more fine grained understanding of the coverage their
test cases provide. In future work we aim to apply the recommendations we presented to
the TestImpactGraph itself and study in-depth how much it helps developers explore
automatically generated test cases, as well as test cases written by their colleagues. In
addition, we intend to compare how understanding test cases with the specialized Test-
ImpactGraph compares to using standard debuggers, IDE features like jump-to-definition,
or general-purpose visualizations of the tests’ call graphs. We want to investigate other
means to convey the behavior and impact of a test case, e.g., through test names or textual
descriptions, leveraging our observations about deep and accidental coverage. Further, we
will explore ways to help developers understand test cases that improve the test suite in
other ways than instruction coverage, such as covering edge cases, reproducing known
bugs or killing artificial mutants of the system under test.

In short, this chapter contributes:

• The design and a prototypical implementation of the TestImpactGraph, a visualiza-
tion to help developers understand the behavior and impact of a test case generated
to amplify an existing test suite.

• Ten actionable recommendations on how tools with a similar aim should visualize
developer tests.

Our vision is that tools like the TestImpactGraph will enable developers to dive deep
into new test cases and help them understand how and why these test cases amplify the
power of their test suite.

4

65

4
Shaken, Not Stirred.
How Developers Like
Their Amplified Tests

Test amplification makes systematic changes to existing, manually written tests to provide tests

complementary to an automated test suite. We consider developer-centric test amplification,

where the developer explores, judges and edits the amplified tests before adding them to their

maintained test suite. However, it is as yet unclear which kind of selection and editing steps

developers take before including an amplified test into the test suite. In this chapter we conduct

an open source contribution study, amplifying tests of open source Java projects from GitHub.

We report which deficiencies we observe in the amplified tests while manually filtering and

editing them to open 39 pull requests with amplified tests. We present a detailed analysis of

the maintainer’s feedback regarding proposed changes, requested information, and expressed

judgment. Our observations provide a basis for practitioners to take an informed decision on

whether to adopt developer-centric test amplification. As several of the edits we observe are

based on the developer’s understanding of the amplified test, we conjecture that developer-

centric test amplification should invest in supporting the developer to understand the amplified

tests.

This chapter is based on C. Brandt, A. Khatami, M. Wessel and A. Zaidman. Shaken, Not Stirred. How Developers

Like Their Amplified Tests, IEEE Transactions of Software Engineering, 2024 [54].

4

66 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

A utomated testing has become central to ensure a high quality during software develop-
ment [28, 38, 58]. Nevertheless, writing tests is seen as a tedious and time-consuming

task [6–8]. This is where automatic test generation comes in by supporting developers and
relieving them of the burden of writing tests [10, 46, 115–117].

State-of-the-art test generation tools are powerful in protecting against regressions [20],
finding crashes [118], and reproducing crashes [22, 23]. However, they are rather difficult
to adopt in day-to-day software engineering, in part due to the difficulty to understand the
generated test scenarios [45], [32]. For developers it is crucial to understand a test when it
fails and they have to localize the underlying fault [35], [41].

This is where test amplification shows promise: instead of generating completely
new tests, e.g., with genetic algorithms (e.g., EvoSuite [10]), test amplification makes
systematic changes to existing, manually written tests with the intent to provide tests
that are complementary to the existing test suite [42]. In contrast to generated tests that
are stored separately from manually written tests, e.g., when tests are regenerated after
software evolution [21, 37], our focus is on developer-centric amplified tests. Developer-
centric test amplification is a concept we coined in our previous work (Chapter 2). It
proposes that developers adopt the amplified tests into their main test suite, potentially
after manually adjusting the amplified tests. Developer-centric test amplification means (1)
developers benefit from only having to validate amplified tests, instead of writing these
tests manually, and (2) understanding the tests should be easier because they originate
from manually written tests. To illustrate this more vividly we introduce an example use
case of developer-centric test amplification:

Adriana is a software developer in a project that is struggling with automated testing,
as pressure for new features makes it hard to find time to write tests. She has some
time left this sprint and decides to invest it into testing. To be quicker, she uses a
developer-centric test amplification tool which generates compiling and passing
tests that cover code that is not covered by the test suite. Adriana browses through
the proposed tests, inspecting their behavior and new coverage contribution to
judge which ones to include in the test suite. Whenever she decides to keep a
test, she takes a look at its code and does some adjustment to make them easier to
understand for her colleagues and fit better to their project’s style and quality. After
adding several new tests into the test suite of her project, she commits them all and
prepares a merge request that describes the improvements to the test suite.

While several studies have investigated the shortcomings of generated and amplified
tests from the developer’s perspective [45, 47], (Chapter 2), little is known about which kind
of adjustments developers would make to an amplified test before including it in the test
suite. Therefore, the goal of this chapter is to better understand the effort that developers
need to go through when (1) deciding whether to add an amplified test to the test suite, and
(2) adjusting the amplified test before it can be added. To this end, we conduct a qualitative
open-source contribution study [13, 119]: We amplify tests for 52 open-source projects
and open 39 pull requests to contribute the amplified tests back to the projects. For the
test amplification, we employ DSpot, which is the original, arche implementation of test
amplification for Java created by Danglot et al. [13, 42]. Our qualitative investigation in
this chapter is steered by the following research questions:

4.1 Developer-Centric Test Amplification

4

67

RQ1: What deficiencies do we observe in DSpot amplified tests when preparing them
for a pull request?

RQ1.1: On which criteria do we select a candidate test to include in the test suite?
RQ1.2: Which manual edits do we perform to improve the tests before submission?

RQ2: What feedback do we receive from the maintainers on the DSpot amplified
tests?

RQ2.1: Which changes are proposed during the pull request discussion?
RQ2.2: What kind of information is requested by the maintainers during the pull

request discussion?
RQ2.3: How do the maintainers justify their judgment over the amplified tests

during the pull request discussion?

Based on an existing dataset of buildable Java repositories [120], we try to amplify
tests for 312 open source projects. We employ the developer-centric test amplification of
DSpot [18], (Chapter 2), together with a new automatic post-processing module that filters
and simplifies the amplified tests. For each of the 52 projects where the test amplification
succeeds, we manually select a candidate test to submit in a pull request. The criteria that
emerge during this selection process answer RQ1.1. We manually edit the candidate tests
to improve their quality before opening a pull request. Based on our experiences in this
phase, we build a checklist of edits to expect, the answer to RQ1.2. To validate whether
these edits would also be proposed by open source maintainers, we omit the manual editing
for half of the projects.

We open pull requests for 39 projects with one amplified test each. To clarify our
contribution to the project maintainers, we provide an automatically generated textual
description of the amplified test. During the discussion, we incorporate any proposed
changes and answer arising questions. 19 pull requests were accepted and 13 closed.
We analyze the discussions on the completed pull requests to elicit the changes that the
maintainers propose (RQ2.1), the information they request to understand the amplified
tests (RQ2.2), and how they justified their judgment over the amplified tests (RQ2.3). As
we manually selected which amplified tests to submit and manually edited half of them to
improve their quality before submitting, the results for the second set of research questions
more closely represent what amplified test are capable of with human intervention, or with
automation advancing might be capable of in the future.

4.1 Developer-Centric Test Amplification
The technique of test amplification generates new tests by modifying test that were written
by developers [42]. Our work is based on the developer-centric test amplification of
DSpot [13], (Chapter 2), which we introduce in this section.

To explore new behavior, DSpot mutates the setup and action phase of an existing

4

68 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

1 // Together with all generated tests, reaches a mutation score of 0.8518
2 @Test public void test09() {
3 InputStream.nullInputStream();
4 PipedReader pipedReader0 = new PipedReader();
5 Reader reader0 = Reader.nullReader();
6 ByteArrayOutputStream byteArrayOutputStream0 = new ByteArrayOutputStream(17);
7 ObjectOutputStream objectOutputStream0 = new ObjectOutputStream(byteArrayOutputStream0);
8 BufferedOutputStream bufferedOutputStream0 = new BufferedOutputStream(objectOutputStream0);
9 MockPrintStream mockPrintStream0 = new MockPrintStream(bufferedOutputStream0, true);
10 CopyUtils.copy(reader0, (OutputStream) mockPrintStream0);
11 Reader reader1 = Reader.nullReader();
12 assertNotSame(reader1, reader0); }

Figure 4.1: Test generated by EvoSuite for apache/commons-io.

1 // Covers new instructions in ByteArrayOutputStream.reset and AbstractByteArrayOutputStream.resetImpl
2 @Test public void testToByteArrayImplAndResetImpl() {
3 InputStream in = new ByteArrayInputStream(inData);
4 in = new ThrowOnCloseInputStream(in);
5 final ByteArrayOutputStream baout = new ByteArrayOutputStream();
6 final OutputStream out = new ThrowOnFlushAndCloseOutputStream(baout, false, true);
7 final Writer writer = new OutputStreamWriter(out, StandardCharsets.US_ASCII);
8 CopyUtils.copy(in, writer);
9 writer.flush();
10 baout.reset();
11 Assertions.assertEquals("", baout.toString()); }

Figure 4.2: Test generated by developer-centric DSpot.

test, called the original test, by changing the values of literals and removing or adding
method calls to the objects under test. The old assertions are removed and replaced by new
assertions. For the oracle, DSpot uses the current behavior of the system: it executes the
test and observes returned values, which it uses as the expected value of the new assertion.
This leads to all generated tests passing. The developer-centric variant of DSpot aims at
generating concise and simple tests, so it adds one setup mutation and one assertion per
test it generates. Lastly, only tests that execute instructions not yet covered by the test
suite are kept and shown to the developers1.

As the next step in developer-centric test amplification, a developer browses and
inspects the new, amplified tests. They judge whether a test is valuable to include into
their test suite, e.g., because of the additional coverage it provides. The developer can also
edit the tests where they see fit, like adding meaningful names or explanatory comments.
The goal is that they include the selected and edited tests into their test suite and keep
maintaining them in the future.

Developer-centric test amplification is one instance of a variety of approaches to
automatically generate xUnit tests. In comparison to, e.g., the widely studied search-based
test generation of EvoSuite [10], it differs in these central points:

1. EvoSuite generally works without input of manually written tests, while DSpot mutates
existing, manually written tests [13]. This introduces the assumption of more readable

1DSpot can select tests based on mutation score, the developer-centric variant selects on added instruction
coverage for its easier explainability and better performance.

4.2 Automatic Post-Processing for developer-centric test amplification

4

69

tests from the outset.

2. EvoSuite generally aims to generate a whole test suite at once [17], while DSpot’s
approach is closer to test augmentation: Complementing an already existing test suite
with matching additional tests [121, 122].

3. The developer-centric variant of DSpot sees the developer judging and editing a test as
a central component before adding the test to a maintained test suite. That is why it
should always be combined with additional information and approaches to facilitate
the communication between the test generation and the developer (Chapter 2).

Figure 4.1 and Figure 4.2 illustrate the difference of tests generated by EvoSuite and
developer-centric DSpot, such as the variable names and the information given about the
impact of the generated test (see line 1).

Recently, Roslan et al. [123] extended EvoSuite to support test amplification in combina-
tion with EvoSuite’s powerful search-based test optimization. While they reported anecdo-
tal evidence of less readability than DSpot-generated tests, all previous developer-involving
studies with EvoSuite do not consider the test amplification approach. In Section 4.6 we
connect and contrast our findings with those of the previous user studies of EvoSuite.

Another approach that can be related to test amplification and search-based test gen-
eration is fuzzing, where random, but valid inputs are generated and iteratively mutated
to test the robustness of a software system [5]. While the techniques overlap in their use
of mutation and aim to improve the quality of the software under test, there are signifi-
cant differences that make it difficult to apply the findings of developer-centered fuzzing
studies [124, 125] to our work. Fuzzing focusses on highly structured test inputs and
requires the use of fuzzing harnesses to call the system under test [126]. In comparison,
test amplification and search-based test generation produce ready to use test structures
leveraging xUnit frameworks [127], which developer-written tests also use. Furthermore,
fuzzing primarily targets robustness, aiming to uncover crashes or unintended execeptions
in the software under test [5]. Because of this, fuzzing is often used to address security
and reliability concerns, where any fuzzer output that leads to an undesirable crash is
relevant to be addressed [128]. In comparison, developer tests like the ones produced by test
amplification typically have a functional oracle or assertion that checks that the code under
test behaves as expected. Therefore, the tests generated by amplification and search-based
approaches improve the quality of the functional test suite, which in turn improves the
confidence in the correct behavior of the code under test. Beyond that, the developer test
suite can also serve as documentation [38–40] and a starting point for developers to localize
the root cause of a test failure [35, 41], two use cases where the understandability of the
tests is crucial.

4.2 Automatic Post-Processing fordeveloper-centric
test amplification

We previously conducted an exploratory study to evaluate a test amplification plugin for
the IntelliJ IDE (Chapter 2). The developers we interviewed mentioned several aspects
they would change before accepting the amplified tests into their test suite. For example,

4

70 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

removing unnecessary statements or changing cryptic identifiers to meaningful ones. The
participants also pointed to methods that they found not relevant to test, e.g., simple getters.
To automate these already known points, we design an automatic post-processing tool
for developer-centric amplified tests: the prettifier. The prettifier is based on an existing
module in DSpot and is run after the amplification described in Section 4.1. The aim of the
prettifier is to make the resulting tests: (1) more concise, (2) easier to read, and (3) more
relevant to developers.

The participants of the previous study spent a lot of their time understanding the

behavior of an amplified test (Chapter 2). This understanding was the basis for their
judgment on whether to accept a test into their test suite. Previous studies have shown
that a natural language description helps developers to understand generated tests [34, 35].
To reduce the effort required by developers to understand an amplified test, we generate
natural language descriptions of the behavior and impact of the test compared to the rest
of the test suite.

In this sectionwewill present our design for the prettifier and the description generation
for amplified tests.

4.2.1 Prettifier module
To automate several of the post-processing steps indicated by our previous study (Chapter 2),
we extend Danglot et al.’s prettifier module for DSpot [18]. Our approach takes three steps:
(1) minimizing the tests to make them faster to read, (2) renaming variables and the test
methods to make them less cryptic and more expressive, and (3) filtering and prioritizing
the tests according to their relevance to the developer.

Minimizer
To remove statements that were part of the original test, but are not relevant for the
amplified test, we adopt Oosterbroek et al.’s approach [71]. They minimize amplified tests,
while retaining the provided additional coverage. The approach works in increasingly
conservative steps: a) remove all statements except the assertion and the ones needed
for the code to compile, b) remove all statements that do not directly interact with the
assertion, i.e., by setting variables used in there, or c) remove all statements that do not
(in)directly interact with the assertion, i.e., by calling a method on the object involved in
the assertion. When a step decreases the coverage or causes the test to fail, the next step is
tried.

We also activate two existing minimizers of DSpot. One in-lines single use variables
created by the DSpot amplification, the other removes redundant casts included by the
amplification for safety.

Test and Variable Renamer
To make the tests easier to read and understand, we implement a simple variable renamer
that hides DSpot’s intermediate variable names (__DSPOT_path_696) with less cryptic,
simple names (String2, pattern: <Type><N>). Further, we generate meaningful names
for the amplified tests based on the additional coverage they provide using the NATIC
approach [33]. NATIC identifies in which unique methods a test covers additional instruc-
tions, compared to the other amplified tests and the existing test suite. Similar to Daka et

4.2 Automatic Post-Processing for developer-centric test amplification

4

71

al.’s approach [32], we rank the methods according to how much additional coverage they
contain, concatenate up to two of the method names and generate a unique test name such
as “testGetFileAndHasLength”.

Filter and Prioritize
One issue with automatic test generation can be the large number of tests produced.
Specifically with developer-centric test amplification, some generated tests target methods
that developers find irrelevant to test, such as simple getters, or hashCode. To reduce
the number of tests not relevant to developers, we included a developer-centric filter in
the prettifier. It removes tests that only contribute coverage in simple getters or setters,
i.e., one line methods starting with “get” or “set”. The filter also removes tests that only
add coverage in Java’s hashCode method. Because exception handling code is commonly
under-tested [129, 130], we explicitly keep any test that checks for an exception. The
prettifier puts the test with the most additionally covered instructions first, so that the
developers inspect the most impactful amplified test first.

4.2.2 Descriptions for Amplified Tests
In our previous study (Chapter 2), we saw that a major step for the developers was under-
standing the behavior and intent of an amplified test. The developers studied the code of
the test, compared it to the original test and inspected the newly covered code under test.
To support the understanding of amplified tests, we design an approach for an automati-
cally generated, natural language description for amplified tests. The description surfaces
the behavior and impact of the test compared to the existing test suite. It is meant to be
informative for the developer without having to read the code, e.g., as a description in a
pull request that proposes an amplified test.

Assertion Change

Coverage Original Test

Test that when .

This tests the methods . The test is based on .

Figure 4.3: The basis template for our description of amplified tests.

Similar to previous test description generators [34, 35], we use a template-based ap-
proach. It consists of four components, as presented in Figure 4.3: (1) Describing the
assertion, (2) describing the change to the setup of the test, (3) describing the additional
coverage that is contributed, and (4) pointing to the original test. We fill these components
based on information collected during the amplification process. Figure 4.4 shows an
example test and its corresponding description. In this case, the assertion is an expected
exception, the change made by the amplification was to set the value of a literal method
call parameter to an empty string. The description indicates that additional coverage is sit-
uated in the method BuilderFactory.build, and that the original test was buildDouble.
The full templates and our implementation are open-source and shared as part of our
replication package [131].

4

72 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

1 Test that a java.lang.NumberFormatException is thrown
2 when the parameter data is set to "" .
3 This tests the method BuilderFactory.build .
4 This test is based on the test buildDouble .
1 /* Coverage improved at
2 redis.clients.jedis.BuilderFactory.build L. 8 +2 instr. */
3 @Test public void testBuild() throws Exception {
4 try {
5 Double build = DOUBLE.build("".getBytes());
6 fail("testBuild should throw NumberFormatException"); }
7 catch (NumberFormatException expected) {
8 assertEquals("empty String", expected.getMessage()); }}

Figure 4.4: An example amplified test and its generated description. The original test and the name of the changed
parameter are not visible.

4.3 Open Source Contribution Study
The goal of this chapter is to gain a clearer understanding of the changes that develop-
ers would make to amplified tests before including them into their test suite. To this
end, we conduct a qualitative open source contribution study [13, 119], utilizing DSpot’s
developer-centric test amplification, our improved prettifier, and the automatically gener-
ated descriptions for amplified tests. The central step of the contribution study is to open
pull requests with amplified tests to open source projects. However, it was crucial to us to
not antagonize the project maintainers against us or the research community [132], [119].
Thus, we first carefully selected amplified tests that we believe are a valuable contribution
to the project, and only opened a pull request if we found any. We document the criteria
that arose during this selection process, including how often we applied each of them
(RQ1.1). We also received feedback on the value of the submitted tests during the pull
request reviews, which we analyze to answer RQ2.3.

As the maintainers of a software project are responsible to update the tests when the
software evolves, their feedback is invaluable to understand which changes are necessary
before including an amplified test in a maintained test suite. This is why analyzing the
changes proposed during the pull requests is a central part of our study (RQ2.1). To keep
the burden on the open source developers as minimal as possible, we manually edited and
improved the amplified tests for half of the projects before submitting the pull requests.
The other half we submitted without editing, to validate whether the edits we choose
would also be proposed by a maintainer. To lead our editing, we created and continuously
updated a checklist of potential edits, which we use to answer RQ1.2.

Another ambition of our study is to evaluate whether the automatically generated
textual descriptions are helpful for understanding the behavior and value of amplified tests.
Therefore, for a third of the projects we submitted the pull request with the generated
description. For another third, we submitted the description and a question on whether
the explanation was helpful, and for a third of the projects we submitted the pull request
without any explanation of the amplified test. When analyzing the pull request discussions,
we study what kind of information the maintainers requested, and the connection to
whether an explanation was provided initially (RQ2.2).

Our qualitative study consists of five steps: First, (1) we select candidate projects for our
study. Next, (2) we use the developer-centric test amplification of DSpot and our prettifier

4.3 Open Source Contribution Study

4

73

to generate the amplified tests and their descriptions. Then, (3) we manually select and
improve the amplified tests, documenting our emerging criteria. After this, (4) we open
pull requests with the amplified tests. Finally, (5) we analyze the feedback from the project
maintainers during the pull request discussions. In the following, we will detail the separate
steps of our study.

4.3.1 Repository Selection
Our first step is to find GitHub projects that are suitable for applying DSpot’s test amplifi-
cation. As our approach requires building Java projects, and selecting coverage-improving
tests with the JaCoCo2 tool, we use Khatami and Zaidman’s dataset [120, 133]. They tried
to automatically build and calculate the code coverage of 1454 popular Java GitHub projects.
We consider the 312 projects for which JaCoCo could successfully measure code coverage,
and select one module per project3.

4.3.2 Running the Test Amplification
We run DSpot on all selected project modules with a budget of 30min on a desktop PC. For
the exact configuration of DSpot and the hardware specification, we refer to our replication
package [131]. We collect all test classes generated by DSpot. We also kept partial results,
so if the amplification of all test classes would take longer than 30min we consider all test
classes that were completed within 30min. Next, we apply the prettifier to simplify and
filter the amplified tests and generate matching descriptions.

4.3.3 Manual Selection and Editing
We analyzed all amplified tests and created two checklists:

• How we select the best test to submit to the project.

• Which aspects we manually edit to improve the tests before proposing them to a
project.

The first two authors reviewed all, the other authors a subset of the tests. Then we met
up to come to a negotiated agreement [134] on the points for both checklists. During
the selection and editing process of the study, performed by the first author, new points
emerged. We validated them through discussions with other authors to mitigate bias and
increase the reliability of the checklists [134].

For each project we selected one test to contribute in a pull request: a test we found
the most valuable for the project, or a test where we were curious about the maintainer’s
reaction. For one half of the projects we manually edited the tests with the help of our
checklist and own software engineering experience. To validate if such edits are necessary,
and understand which edits are important to developers, we left the tests for the other
half of the projects unedited. One goal of this study is to contribute to the open source
community while learning from their feedback. It was crucial to us to only ask for the
community’s reviewing effort if we think a test is valuable for the project. If we did not
find a test that seemed valuable, we excluded the project from the rest of the study.
2https://www.jacoco.org/jacoco/index.html, visited August 2022.
3Alphabetically the first. In trials we saw that the amplification not succeeding in one module of a project often
means the same for other modules.

4

74 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

Figure 4.5: An example pull request description from P14-PDM.

4.3.4 Contributing Back the Tests
We opened pull requests for the resulting tests. The pull request description mentions that
we want to add a test and the generated description. As Figure 4.5 shows, we modified
each mention of a method in the “Coverage” and “Original Test” parts to be a clickable link
to the corresponding code on GitHub. The description contains a note that this pull request
was part of a research study. However, we did not reveal that the tests were partially
automatically generated. This is because we wanted to avoid negative backlash based
on biases against automatic test generation. Before opening the pull request, we studied
the contribution guidelines of the project and followed them, e.g., validating that a linter
passes, or applying an auto-formatter. After opening the pull requests, we answered all
questions by the maintainers and incorporated any changes they requested.

4.3.5 Data Analysis
We performed open and axial coding procedures [135] on the pull request discussions
completed as of 19-02-2023. The first author analyzed the discussions by inductively ap-
plying open coding, wherein they identified discussion points on code changes, requests
for information, judgment statements over the tests, and other possibly relevant charac-
teristics of the pull request. They then performed an initial analysis to group the open
codes, employing constant comparison [136] to the pull request discussions to validate
our interpretation. To increase the reliability of the results and mitigate bias, the first and
second authors refined the code set by merging codes together, updating code names, and
identifying a different granularity level for a code. The authors discussed the emergent
codes together with the original data and modified the codes until they reached a negoti-
ated agreement [134]. The outcome was a set of higher-level categories as cataloged in
our codebook [131]. The resulting higher-level categories are structuring the answers to
our research questions in the following section, marked in bold. The lower-level codes
captured the details that we use to illustrate the presented categories by giving concrete
examples from the pull request discussions.

4.4 Results

4

75

4.4 Results
In this section we discuss the results of our study: the test amplification, the manual
preparation for the pull request, and our analysis of the discussions with the maintainers.
To clarify in which projects each observation occurred, we use shorthand references in
the style P[n]-(E|P)(D|N)(M|C|O|D). The number uniquely identifies each project in our
study, while the last three characters give a concise overview on the central dependent
variables for the pull requests: (1) was the test Edited or Plain from the amplification tool,
(2) did we provide the generated Description or Not, (3) the outcome of the pull request:
Merged, Closed, nO reaction yet, under Discussion. Projects where we did not select any
test to contribute are indicated as P[n]-N--. Table 4.1 gives an overview of all open source
projects in our study, including the number of our pull request. We also report the project’s
size, total number of commits, number of contributors, number of pull requests, and the
year the repository was created, showing that our study includes a diverse set of projects.

4.4.1 Running the Test Amplification
The base dataset [120] identified 312 repositories with in total 1821 Java modules that
JaCoCo can automatically calculate coverage for. After selecting one module per repository,
we in total tried to generate amplified tests for 312 modules. From the DSpot amplification,
we obtained 238 classes with generated tests for 62 projects. For the other projects, DSpot
crashed during the execution or could not produce any tests that improve the instruction
coverage within the budget of 30min. To these tests we apply the prettifier, resulting in 190
classes with 1297 generated tests for 52 projects. For the gap of 10 projects, all amplified
tests were filtered out according to the criteria we explained in Section 4.2.1. Many projects
only have a few tests generated (less than 5 generated test in 25 out of 52 projects), with a
few large outliers (P51-PDC: 618 tests, P50-PDM: 123, P10-EDM: 96).

4.4.2 RQ1.1: On which criteria do we select a candidate test
to include in the test suite?

For each project that we generated amplified tests for, we explored the new tests to
choose a candidate test for the pull request. Initial exploration showed that there was a
considerable number of unsuitable tests that could not be submitted for a variety of reasons.
To transparently show the effort required to select the amplified tests in our study, we
document our process of identifying the candidate test extensively. Through this process
arose two checklists: one with negative selection criteria and one with positive selection

criteria. With the negative criteria we identify tests that are not worth continuing with, e.g.,
because they would take so much effort to improve, that writing a new test from scratch
felt easier. As we only submit one test per project, we used the positive criteria to pick
which test of multiple possible candidates to choose for this study.

Negative Selection Criteria

We excluded amplified tests for the following reasons:
Coverage False Positive (P22-N–, P29-N–, P32-N–, P13-N–,
P34-ENO, P43-N–): Appearing in six projects, the most-prevalent criterion to reject a test
was a coverage false positive, i.e., tests where inspection revealed no additional coverage

4

76 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

Table 4.1: The open source projects used in our study, including metrics to show their size, activity and age.
Metrics were collected through the SEART GitHub search [137] on 2023-09-14. Each pull request can be accessed
by the hyperlink in the third column, or via https://github.com/<project>/pull/<pr number>.

ID Project O
ur

Pu
ll
Re

qu
es
t

Li
ne
so

fC
od

e

Co
m
m
its

Co
nt
rib

ut
or
s

Pu
ll
Re

qu
es
ts

Cr
ea
tio

n
Ye
ar

P1-EDC apache/commons-io #358 55k 4323 97 478 2009
P2-EDC apache/curator #418 57k 2817 114 478 2014
P3-PDC apache/guacamole-client #731 118k 6616 80 909 2016
P4-EDM apache/httpcomponents-core #349 82k 3742 65 424 2009
P5-ENM apache/unomi #436 78k 2608 44 645 2015
P6-N– apache/zookeeper – 182k 2511 191 2056 2009
P7-EDM authme/authmereloaded #2562 69k 4131 111 740 2013
P8-PDM axonframework/axonframework #2244 158k 10281 154 1679 2011
P9-EDM cloudbees-oss/zendesk-java-client #480 15k 953 62 425 2013
P10-EDM decorators-squad/eo-yaml #504 15k 944 20 240 2016
P11-N– dependencytrack/dependency-track – 314k 3946 94 963 2013
P12-PNC digitalpebble/storm-crawler #974 51k 1815 39 344 2013
P13-N– dius/java-faker – 62k 834 83 515 2011
P14-PDM eclipse/lemminx #1228 511k 1305 38 824 2018
P15-PNM ff4j/ff4j #571 71k 1413 80 367 2013
P16-N– firebase/firebase-admin-java – 85k 447 42 610 2017
P17-EDC gitlab4j/gitlab4j-api #852 50k 2169 145 362 2014
P18-ENC glyptodon/guacamole-client #470 118k 6608 79 471 2013
P19-N– hangarmc/hangar – 66k 2874 41 860 2020
P20-N– hibernate/hibernate-tools – 51k 3177 16 4415 2011
P21-EDM hyperledger/fabric-chaincode-java #244 17k 490 35 282 2017
P22-N– jenkinsci/email-ext-plugin – 21k 1748 95 484 2010
P23-N– jenkinsci/jira-plugin – 15k 1481 79 546 2010
P24-PNC jqno/equalsverifier #654 36k 2884 31 542 2015
P25-ENM jsqlparser/jsqlparser #1568 52k 2030 112 420 2011
P26-ENO jtablesaw/tablesaw #1124 1.182k 2514 80 467 2016
P27-ENM lukas-krecan/jsonunit #530 14k 1549 39 461 2012
P28-PNO maven-nar/nar-maven-plugin #389 42k 1277 71 213 2009
P29-N– mcmmo-dev/mcmmo – 56k 6627 165 631 2012
P30-EDM miso-lims/miso-lims #2680 342k 4801 20 2596 2012
P31-PDC moquette-io/moquette #680 20k 1394 41 316 2014
P32-N– mybatis/guice – 16k 1809 25 520 2013
P33-ENM nats-io/nats.java #663 56k 1578 48 591 2015
P34-ENO netflix/zuul #1265 26k 1512 54 1080 2013
P35-PDC nlpchina/elasticsearch-sql #1179 145k 1010 30 250 2014
P36-PDM oblac/jodd #788 36k 5364 57 267 2012
P37-N– open-metadata/openmetadata – 639k 7322 176 7347 2021
P38-ENC openhft/chronicle-queue #1115 41k 7516 58 705 2013
P39-PND perwendel/spark #1257 12k 1067 124 528 2011
P40-N– pwm-project/pwm – 186k 3063 41 293 2015
P41-EDO qos-ch/logback #574 74k 4451 113 644 2009
P42-PDM redis/jedis #3019 70k 2269 188 1680 2010
P43-N– redouane59/twittered – 47k 701 24 278 2020
P44-EDO rickfast/consul-client #461 11k 556 72 255 2014
P45-PDM rubenlagus/telegrambots #1070 33k 1050 91 474 2016
P46-EDO spotify/dbeam #486 6k 821 14 645 2017
P47-ENC spring-projects/spring-data-couchbase #1461 40k 1210 48 589 2013
P48-EDM synthetichealth/synthea #1082 1.015k 4662 68 728 2016
P49-PDC teamnewpipe/newpipeextractor #850 155k 2479 64 642 2017
P50-PDM wikidata/wikidata-toolkit #691 44k 1891 28 553 2014
P51-PDC xerial/sqlite-jdbc #741 30k 1521 110 383 2014
P52-EDM zsmartsystems/com.zsmartsystems.zigbee #1333 165k 1180 29 1080 2017

https://github.com/apache/commons-io/pull/358
https://github.com/apache/curator/pull/418
https://github.com/apache/guacamole-client/pull/731
https://github.com/apache/httpcomponents-core/pull/349
https://github.com/apache/unomi/pull/436
https://github.com/AuthMe/AuthMeReloaded/pull/2562
https://github.com/AxonFramework/AxonFramework/pull/2244
https://github.com/cloudbees-oss/zendesk-java-client/pull/480
https://github.com/decorators-squad/eo-yaml/pull/504
https://github.com/DigitalPebble/storm-crawler/pull/974
https://github.com/eclipse/lemminx/pull/1228
https://github.com/ff4j/ff4j/pull/571
https://github.com/gitlab4j/gitlab4j-api/pull/852
https://github.com/glyptodon/guacamole-client/pull/470
https://github.com/hyperledger/fabric-chaincode-java/pull/244
https://github.com/jqno/equalsverifier/pull/654
https://github.com/JSQLParser/JSqlParser/pull/1568
https://github.com/jtablesaw/tablesaw/pull/1124
https://github.com/lukas-krecan/JsonUnit/pull/530
https://github.com/maven-nar/nar-maven-plugin/pull/389
https://github.com/miso-lims/miso-lims/pull/2680
https://github.com/moquette-io/moquette/pull/680
https://github.com/nats-io/nats.java/pull/663
https://github.com/Netflix/zuul/pull/1265
https://github.com/NLPchina/elasticsearch-sql/pull/1179
https://github.com/oblac/jodd/pull/788
https://github.com/OpenHFT/Chronicle-Queue/pull/1115
https://github.com/perwendel/spark/pull/1257
https://github.com/qos-ch/logback/pull/574
https://github.com/redis/jedis/pull/3019
https://github.com/rickfast/consul-client/pull/461
https://github.com/rubenlagus/TelegramBots/pull/1070
https://github.com/spotify/dbeam/pull/486
https://github.com/spring-projects/spring-data-couchbase/pull/1461
https://github.com/synthetichealth/synthea/pull/1082
https://github.com/TeamNewPipe/NewPipeExtractor/pull/850
https://github.com/Wikidata/Wikidata-Toolkit/pull/691
https://github.com/xerial/sqlite-jdbc/pull/741
https://github.com/zsmartsystems/com.zsmartsystems.zigbee/pull/1333

4.4 Results

4

77

over existing tests. For example, the method calls leading to the additional coverage were
in code taken over from the original test, that was not influenced by the amplified change
(P22-N–, P29-N–, P32-N–). In three other cases, we browsed through the existing tests for
the same object and found tests that are already calling the instructions the amplified test
claims to newly cover (P13-N–, P34-ENO, P43-N–). We found that in three false positive
cases mocking was used (P13-N–, P29-N–, P32-N–), pointing to missing support for mocks
in DSpot’s coverage calculation.
Simple Getters and Setters with Non-Standard Names (P11-N–): Tests only contribute
coverage in simple getters and setters with non-standard names (not starting with ‘get’ or
‘set’), which should have been filtered by the prettifier.
Could Not Find Class (P37-N–, P40-N–): We could not find the test class and the class
under test (P37-N–), or the class with additional coverage (P40-N–).
Test Did Not Pass (P2-EDC): A test did not pass because the expected exception was not
thrown. This and the last issue could be caused by the time difference between the commit
at which we amplified the tests and the commit on which our pull request was based.
Assertion Unrelated to New Coverage (P20-N–, P22-N–, P29-N–, P32-N–): In four
projects, we found tests where the generated assertion does not check the behavior of the
newly covered code. For example, the assertion is generated at a location before the call
to the newly covered code (P20-N–), or the checked value is not influenced by the newly
covered code (P23-N–, P42-PDM, P48-EDM). In both cases, while the test covers the code,
we cannot claim that it tests the code.
No Explicitly Thrown Exception (P17-EDC, P19-N–, P23-N–, P24-PNC): In four projects,
we found tests for RuntimeExceptions implicitly caused, e.g., in an unprotected call on a
parameter that was set to null during amplification. As these exceptions did not seem to be
part of the developer-intended behavior, we excluded these tests.
Change Unrelated to Assertion or New Coverage (P6-N–):
We excluded tests where the amplified change did not influence the asserted value nor the
additional coverage. The amplification process should check whether the amplified change
is necessary for the additional coverage an amplified test is providing.
Readability and Understandability (P6-N–, P23-N–, P25-ENM, P38-ENC): A further
negative selection criterion we used in four projects was that tests were not good to
understand or not readable, because parts of them were cryptic, long, or verbose. For
example, in P23-N– the original tests already contained complex configuration of mock
behavior.
Unclear Connection between Test and Additional Coverage (P13-N–, P16-N–, P20-N–
): In three projects, we encountered tests where it was unclear how the amplified change or
the generated assertion leads to the new coverage reported by the amplification. In contrast
to the coverage false positives, we did not find a test executing the same instructions, but
we could not trace how the method calls in the new test would lead to execute the covered
instructions.

Positive Selection Criteria
The positive selection criteria are divided into two groups: selecting the most valuable test,
or one that we were curious about for our study. In seven projects, we did not need to apply
any positive criteria, as there was only one test generated (P3-PDC, P9-EDM, P18-ENC,
P21-EDM, P44-EDO, P47-ENC, P49-PDC). In 13 projects, the negative selection criteria

4

78 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

already excluded all generated tests, we excluded these projects from the rest of our study
(P6-N–, P11-N–, P13-N–, P16-N–, P19-N–, P20-N–, P22-N–,
P23-N–, P29-N–, P32-N–, P37-N–, P40-N–, P43-N–).

We used the following criteria for the positive selection:
Most Additional Coverage (P3-PDC, P9-EDM, P18-ENC, P21-EDM, P44-EDO, P47-ENC,
P49-PDC): In six projects, the test we selected covered the most additional instructions. This
takes little effort, as the tests in each class are already sorted according to their additional
coverage contribution.
Understandability (P12-PNC, P15-PNM, P25-ENM, P26-ENO, P28-PNO, P39-PND, P41-
EDO, P46-EDO): In nine projects, we selected tests based on their understandability, as
we expect an easy to understand test to more likely be accepted. For this, three criteria
emerged that we used in conjunction: a) the coverage improvement is local to a few, closely
related methods, b) the connection from the test to the additionally covered methods is
clear from the methods called in the test, and c) the test is small and simple.

On several occasions, we choose a candidate test because we were curious about the
developer’s reaction. In all these cases, we still only considered tests we believe to be
a valuable contribution to the project. Non-valuable tests are identified by the negative
selection criteria discussed before.
Exception Test (P10-EDM, P17-EDC, P24-PNC, P30-EDM, P34-ENO, P35-PDC, P38-ENC,
P42-PDM, P51-PDC): In nine projects, we selected a test that checks for an exception.
Could Be Considered Not Worth Testing (P7-EDM, P8-PDM, P31-PDC, P36-PDM,
P45-PDM, P52-EDM): In six projects, the test was contributing coverage in methods that
developers could consider not valuable to test, such as a complex setters, toString, or
equals.
Documentation Mismatch (P27-ENM): In P27-ENM we selected a test whose behavior
did not match with the documentation of the method under test.
Improve Assertion Manually (P33-ENM): For P33-ENM, we were curious if we can
improve an assertion that is not checking the newly covered code.
Uncommonly Large Coverage Increase (P50-PDM): In P50-PDM, one small method call
lead to a lot of new coverage, more than what we saw throughout the study.

Answer to RQ1.1: When selecting tests for the pull requests, we mainly excluded
coverage false positives, tests with assertions that do not check the newly covered
code, or tests that check for unintended runtime exceptions.

4.4.3 RQ1.2: Which manual edits do we perform to improve the
tests before submission?

In this section we present the checklist that we created to guide our manual editing step
before opening pull requests.
Align Assertion Style (P4-EDM, P5-ENM, P7-EDM, P9-EDM, P10-EDM, P17-EDC, P25-
ENM, P26-ENO, P27-ENM, P30-EDM, P33-ENM, P34-ENO, P38-ENC, P41-EDO, P44-EDO,
P47-ENC, P52-EDM): The edit we performed in the largest number of projects (17) was
to align the assertion style with the other tests. Examples include: statically importing
assertEquals, and unifying the assertion framework, e.g., transforming plain JUnit asser-

4.4 Results

4

79

tions to their Hamcrest versions. DSpot did not remove Hamcrest assertions, so we had to
remove old, no longer matching assertions.
Remove Unnecessary Code (P2-EDC, P4-EDM, P5-ENM, P7-EDM, P10-EDM, P26-ENO,
P34-ENO, P38-ENC, P41-EDO, P44-EDO, P47-ENC, P48-EDM, P52-EDM): The second most
prevalent edit (13 projects) was to remove variables and statements that were not relevant
for the asserted behavior of the amplified test. These are left over from the original test, or
temporary variables created by the test amplification and missed during their intended
removal. In rare cases we also had to remove unnecessary casts or parentheses, introduced
by the test generation for safety.
Adapt To Match Other Edits (P5-ENM, P7-EDM, P18-ENC, P21-EDM, P33-ENM): In
five projects, we had to adapt the description of the test to match our manual edits. In
P5-ENM we also adapted the test name and the expected value of the assertion to match
the behavior that changed during our edits.
Apply IDE Recommendation (P2-EDC, P17-EDC, P52-EDM): In three projects, IntelliJ
proposed a simplification through static analysis, e.g., reducing an always true condition.
Resolve Formatting and Linters (P8-PDM, P10-EDM, P26-ENO, P46-EDO): The contri-
bution guidelines of projects sometimes state to apply auto-formatting (P8-PDM, P10-EDM,
P46-EDO) or resolve all linter warnings (P10-EDM) before finalizing a pull request. In
P26-ENO, we added line breaks to long lines to improve the readability.
Change Test Name (P25-ENM, P34-ENO, P52-EDM): We changed the test name to avoid
duplication with existing tests (P25-ENM, P52-EDM), or make the test name fit the conven-
tion of the other test names in the class (P34-ENO).
Resolve Unrelated Amplified Change, Additional Coverage or Generated Asser-
tion (P5-ENM, P21-EDM, P33-ENM): We encountered tests where the amplified change,
additional coverage, or generated assertion were unrelated. In two cases, we changed
the assertion to check the behavior of the newly covered code (P21-EDM, P33-ENM). In
P5-ENM and P33-ENM the amplified change and the new assertion provided additional
coverage, but they were not related to each other. We selected one test goal and adapted
the rest of the test.
Move Test (P1-EDC, P7-EDM, P10-EDM, P52-EDM): In two cases (P1-EDC, P10-EDM),
the object under test and the additional coverage were not related to the test class of the
original test. We moved the tests to a better fitting class. In two other projects (P7-EDM,
P52-EDM), we added our tests below other tests that were targeting the same method.
Simplify Literals (P7-EDM, P21-EDM, P46-EDO): For three tests, we simplified literal
values in the test setup. For example, we removed extra clauses from a constructed SQL
query that were not relevant for the new test (P46-EDO).
Make Compile (P17-EDC, P25-ENM): In two projects, we found parameters that no longer
fit the signature of the called method. We adapted them, e.g., by copying over variable
initializations from other tests (P25-ENM).

Answer to RQ1.2: When manually editing the amplified tests, we most often aligned
the assertions’ style to the test class and removed code unnecessary for the test
scenario.

4

80 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

4.4.4 RQ2.1: Which changes are proposed during the pull re-
qest discussion?

Here we present the changes discussed by the maintainers on the pull requests with
amplified tests, structured along the categories that emerged from our analysis.
Code Style Conventions (P1-EDC, P8-PDM, P14-PDM, P33-ENM, P42-PDM, P47-ENC,
P50-PDM, P51-PDC): Most frequently, the maintainers proposed changes to let the code
adhere to style conventions [138–141]. This regarded aligning the static import of assertion
methods (P1-EDC, P8-PDM, P14-PDM, P50-PDM) or used constants (P42-PDM) to the rest
of the class, adding a blank line at the end of the file (P33-ENM), or listing our name among
the authors of the file in the comment block (P47-ENC), resolving linter warnings (P1-EDC)
to make the CI pass (P51-PDC), or adhering to variable naming conventions (P1-EDC).
While these seem like conventions of the project, they were not explicitly stated in the
contribution guidelines we examined before each pull request.
Remove Unnecessary Code (P12-PNC, P14-PDM, P49-PDC, P50-PDM): The next most
frequently discussed change was removing unnecessary code. Three maintainers pointed
to unused variables (P12-PNC, P49-PDC, P50-PDM). The test in P14-PDM saved the return
value of a relevant method call in an unused variable. In P12-PNC the maintainer criticized
a statement that had no impact on the test result, and in P49-PDC the reviewer pointed to
unnecessary parentheses.
Change Test Name (P4-EDM, P8-PDM, P10-EDM, P14-PDM): In four pull requests the
reviewers suggested changing the test name. The proposed names described the scenario
of the method calls in the test (P4-EDM, P8-PDM, P10-EDM), or the exception expected by
the assertion (P14-PDM). For P10-EDM, the maintainer explained their naming convention:
“all test names should follow the pattern xDoesSomething”.
Practice Defensive Programming (P1-EDC, P4-EDM, P49-PDC): Over three projects
we got five proposals related to defensive programming. The maintainer of P49-PDC
suggested to not check for the complete message of an exception, which could fail if the
code under test is refactored. The same reviewer asked to use interfaces instead of concrete
implementations and to set variables as final where possible. The review of P4-EDM
proposed to assert the return value of an intermediate call. The reviewer of P1-EDC advised
to use the specialized try-with-resources when writing to an InputStream within a try
environment.
Simplify Setup (P1-EDC, P8-PDM, P10-EDM, P14-PDM): The maintainers of four projects
proposed to simplify the test setup. For example, in P8-PDM, we replaced a multiple times
modified object with a fitting default instance. The reviewer of P14-PDM recognized that
another call than one under test could throw the expected exception and proposed a change
to avoid the tests passing because of the earlier thrown exception.
Choose More Powerful Assertion (P8-PDM, P10-EDM, P49-PDC): Three maintainers
pointed to the benefit of using a stronger assertion method. For example, in P8-PDM they
endorsed a change from assertFalse(...equals()) to assertNotEquals(..).
Merge or Extend Test (P3-PDC, P42-PDM, P48-EDM): Three projects discussed merging
the contributed test with other tests for the same method. P3-PDC and P42-PDM pointed
to moving the assertion to an existing test. The maintainer for P48-EDM proposed to add
an assertion to test a second scenario in the method under test and was open to keep both
in the same test or split them up into two unit tests.

4.4 Results

4

81

Use Meaningful Scenario (P7-EDM, P25-ENM, P47-ENC): Three maintainers proposed
changing the test setup to a more meaningful scenario. For example, the test for P25-ENM
used default initializations for SQL queries. The reviewer of P25-ENM criticized that the
queries were not meaningful, and asked to “craft an actual valid expression.”

Move Test (P12-PNC, P50-PDM, P47-ENC): Three reviews asked to move the test to another
class as it tested a different object than the original test modified by the amplification.
Change Assertion Message (P42-PDM, P30-EDM): The maintainers of P42-PDM and
P30-EDM both proposed to change the assertion message to explain why the code throws
the exception that is expected by the test case.
Move Test Data (P1-EDC): For P1-EDC we moved the amplified test to another class,
including globally defined test data. The maintainer asked us to move the test data into the
test itself, as it was the only test using the data.
Test All Scenarios (P48-EDM): In P48-EDM the reviewer proposed to add a second
assertion, to let the resulting test check for both the succeeding and failing scenario.

Answer to RQ2.1: The majority of changes proposed during the pull request reviews
were focused on adhering to code style conventions and removing unnecessary code.

Figure 4.6 looks closer at the connection between whether we manually edited a test
and whether changes were proposed during the review. We observe that for both edited
and not edited tests the maintainers were more often proposing changes than not.
Three tests without edits were merged without any further changes, while in six projects
the pull requests were closed even when changes were discussed. The latter happened, e.g.,
because through the discussion it became clear that the test is redundant to existing tests
(P1-EDC), or the maintainers provided feedback on the code even though they already
concluded to not accept the test (P49-PDC).

Edited: 18 Changes Proposed: 17 Merged: 19

No Changes Proposed: 15 Closed: 13Not Edited: 14

Figure 4.6: Flow of editing tests, changes proposed during the pull request and pull request outcome.

4.4.5 RQ2.2: What kind of information is reqested by the
maintainers during the pull reqest discussion?

Next to proposing changes, the maintainers also requested different kinds of information
during the discussions:
Purpose of the Pull Request / Test (P3-PDC, P12-PNC, P25-ENM, P27-ENM): Four
reviewers asked to explain the purpose of the pull request or the test, such as “I’m unsure

what issue this is targeting at resolving” (P3-PDC), or “what problem exactly will this PR

solve?” (P25-ENM).

4

82 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

Added Value (P2-EDC, P25-ENM, P27-ENM, P51-PDC): In four cases, we were asked about
the added value that the test is providing.
Coverage Increase (P1-EDC): One maintainer included a coverage tool, checking the
coverage increased.
Description about the Test (P33-ENM): For P33-ENM we did not include the textual
description at first, but we were asked to add a description about our test into the pull
request.
Contribution Compared to Existing Tests (P1-EDC): The maintainer of P1-EDC asked
what our test checks in comparison to existing tests for the same method.
Curiosity (P7-EDM, P14-PDM, P24-PNC, P50-PDM): Three reviewers asked questions out
of curiosity, such as “how [our tool] generated the parameter input” (P7-EDM), which IDE
and formatter we used (P14-PDM), and how we came to writing a test for this specific
method (P24-PNC, P50-PDM).

Figure 4.7 presents a closer analysis of the relationship between whether we provided
a description in the initial pull request (such as in Figure 4.5) and whether additional
information was requested by the reviewers (excluding curious questions). We can see that
questions appeared just as often whether we provided the generated description
or not (4 projects each), and two pull requests without description were merged without
requests for more information. In contrast, curious questions on the details of our
process were mainly asked for pull requests with a description. When we provided a
description, giving additional information never lead to a merged pull request (4 projects),
while the majority of pull requests with a description were merged without further requests
for clarification (14 projects).

Description Provided: 22 No Information Requested: 24
Merged: 19

Closed: 13
Information Requested: 8No Description Provided: 10

Figure 4.7: Flow of description provided, information requested during the pull request and pull request outcome.

Answer to RQ2.2: The maintainers mostly asked for more information regarding the
purpose and value of the contributed test.

4.4.6 RQ2.3: How do the maintainers justify their judgment
over the amplified tests during the pull reqest discus-
sion?

Another aspect we analyzed were the reasons that reviewers accepted or rejected our pull
requests.
Completeness of Contribution (P3-PDC, P5-ENM, P31-PDC, P47-ENC, P49-PDC): Three
reviews pointed out that the contribution was not complete enough. This was because

4.5 Discussion

4

83

all possible outcomes of a method should be tested (P31-PDC, P49-PDC), only a more
comprehensive set of changes would be worth merging (P3-PDC), or an issue tracker
entry (P5-ENM) needs to exist, and a discussion should happen before including a patch
(P3-PDC).
Would Not Test (P2-EDC, P9-EDM, P49-PDC, P51-PDC): Three maintainers pointed out
that the test was targeting methods they would not test, such as simple methods (P2-EDC,
P49-PDC), classes taken from libraries (P51-PDC), or toString as it is used for debugging
only (P9-EDM).
Test Untested Scenarios (P1-EDC, P9-EDM, P24-PNC, P27-ENM, P52-EDM): It was
important to the reviewers that the proposed tests were testing yet untested scenarios. In
P52-EDM and P9-EDM this was the rationale to merge the pull request, in P1-EDC and
P24-PNC this was the reason to close the pull requests as the maintainers found other tests
for the same scenarios. The reviewer of P27-ENM pointed out that “ideally there should be

some intention behind each test.”

Clear Test Scenario (P25-ENM, P27-ENM, P38-ENC): Three maintainers mentioned a
meaningful scenario (P25-ENM) and clarity about what the test is testing (P27-ENM, P38-
ENC).
Code Quality (P1-EDC, P31-PDC:) The reviewer of P1-EDC pointed out that the code
should pass the linter. The maintainer of P31-PDC criticized that some code in the test is
irrelevant for the method under test.

In several cases, we have no indication of the rationale for accepting or rejecting the
pull request: Four projects merged (P15-PNM, P21-EDM, P36-PDM, P45-PDM) and two
closed (P35-PDC, P17-EDC) our pull request without any comment.

Answer to RQ2.3: When verbalizing a rationale for their judgment on the amplified
tests, the project maintainers mentioned the need for a comprehensive contribution
of tests for meaningful, untested scenarios.

4.5 Discussion
In the previous section, we reported on the selection and manual edits we conducted before
submitting the tests in pull requests, as well as the reactions of the maintainers concerning
proposed changes, requested information, and rationale for their decisions to accept or
reject the proposed tests. To connect our observations, we summarize the guidelines for
developers to select and edit amplified tests in Table 4.2. Further in this section, we discuss
the implications of our findings for developers that consider using developer-centric test
amplification, and for test amplification researchers and tool designers. We also present
threats to the validity of our study.

4.5.1 Guidelines for Developers to Select and Edit Amplified
Tests

A strong take-away from our study is that the tests created by state-of-the-art test ampli-
fication tools still needed selection and editing efforts before they are incorporated into
a maintained test suite. To summarize and connect the observations we made for our

4

84 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

Concern in Am-
plified Test

Connected Codes / Observations
(Source RQ)

Explanation

Valid Coverage
Improvement

Test Untested Scenarios (2.3) Check that the targeted code is not tested by
another test
(which might not be considered by amplifi-
cation tool or coverage data)

Added Value, Coverage Increase, Contri-
bution Compared to Existing Tests (2.2)
Coverage False Positive (1.1)

Tests Relevant
Code/Scenario in
Project

Use Meaningful Scenario (2.1) Check that the new coverage provided by
the test covers code that is relevant to test
with your test suite

Would Not Test (2.3)
No Explicitly Thrown Exception (1.1)

Only Necessary
Code

Change Unrelated to Assertion or New
Coverage (1.1)

Check that all code in the test is rel-
evant for the test’s execution or un-
derstandabilityRemove Unnecessary Code (1.2, 2.1)

Resolve Unrelated Amplified Change,
Additional Coverage or Generated As-
sertion (1.2)

Checks Behavior
of Newly Covered
Code

Assertion Unrelated to New Coverage
(1.1)

Check that the assertion of the test actually
validates the behavior of the additionally cov-
ered codeResolve Unrelated Amplified Change,

Additional Coverage or Generated As-
sertion (1.2)

Test Scenario and
Impact are Under-
standable

Readability and Understandability (1.1)

Check that you can / your colleagues could
understand the test and what it is testing

Simplify Literals (1.2)
Simplify Setup (2.1)
Change Assertion Message (2.1)
Unclear Connection between Test and
Additional Coverage (1.1)
Clear Test Scenario (2.3)
Change Test Name (1.2, 2.1)

Good Code Style,
Adhering to
Guidelines

Code Style Conventions (2.1)

Check that the code is well written and ad-
heres to your guidelines

Align Assertion Style (1.2)
Apply IDE Recommendation (1.2)
Resolve Formatting and Linters (1.2)
Change Test Name (1.2, 2.1)
Practice Defensive Programming (2.1)
Choose More Powerful Assertion (2.1)
Code Quality (2.3)

Appropriate
Scope and Loca-
tion

Move Test (1.2, 2.1) Check that the test is at an appropri-
ate location and has the right granularity
(move/merge/extend with other test other-
wise)

Merge or Extend Test (2.1)
Change Test Name (1.2, 2.1)
Move Test Data (2.1)
Test All Scenarios (2.1)

Table 4.2: Guidelines to select and edit amplified tests

4.5 Discussion

4

85

five research questions, we present guidelines for developers on what aspects they should
consider when reviewing an amplified test. Here, selection and editing are put together
and the decision which action to take is left to the developer. If an issue is too large, or it it
is unclear how to resolve it, the developer might choose to exclude the test entirely. If they
see an easy change to address the issue, they might choose to edit the test and include it
in their maintained test suite. Table 4.2 gives an overview and explanation of each of our
guidelines, as well as the observations from our study that it is based on.

We recommend, that a developer using developer-centric test amplification, should
review each test individually and consider whether:

• the newly covered code is indeed not yet covered by any other test,

• the newly covered code or scenario is relevant to be tested in their maintained test
suite,

• the test only contains code necessary for its behavior or understandability,

• the assertion in the test validates the behavior of the newly covered code,

• the test behavior and its impact on the test suite is understandable to them and their
colleagues,

• the code style is adequate and adheres to their coding guidelines,

• the test is at an appropriate location and whether it should be merged or extended
with another test.

4.5.2 Relation to Existing Literature
Several of the edits to amplified tests we observed in our study are related to existing
knowledge about high-quality tests and shortcomings in automatically generated tests.
This section illustrates how each of our guidelines is supported by existing literature.
However, to our knowledge, there is no research looking at what changes developers
concretely make to generated or amplified tests before including them in a test suite.

Valid Coverage Improvement
Our first guideline is that the targeted code should not be covered by another test that might
not have been considered by the coverage data used by the test amplification process. We
observed something similar in an industrial study where developers considered code that
was accounted for in other quality assurance practices or test suites to be not as relevant to
test with a regression test (Chapter 6). In the concrete cases, the code blocks were covered
by fuzzing, so the developers might have seen this robustness testing as sufficient. While
improving an engineering goal such as coverage or mutation score is at the heart of the
definition of test amplification [42], we see in this study that in practice we cannot always
rely on the coverage data that test amplification tools use. This data might exclude other
tests, higher-level test suites or other quality assurance practices.

4

86 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

Tests Relevant Code/Scenario in Project
When testing software, developers need to decide which code is worth testing with auto-
mated tests [2]. In other studies we conducted, we observed that not all code is relevant
for developers to cover with regression tests (Chapters 2 and 6). This is in line with the
common recommendation to not aim for 100 % code coverage [142, 143]. In interviews
with developers, Kochhar et al. found that the judgment what to test is subjective, as
participants disagreed whether it is useful to test simple things [40]. There can also be
behaviors of code that should not be tested. Galindo-Guiterrez et al. identified checking
for NullPointerExceptions that are not explicitly thrown in the code under test as an
undesirable behavior of EvoSuite-generated tests.

Only Necessary Code
Our third guideline recommends removing all code that is not necessary for the execution of
the test. This code might be left over from the original test that was amplified or no longer
needed after other changes to the test. Similarly, the test smell “General Fixture” [144] is
based on unnecessary code in test setup methdos, and unnecessary code is also a problem
in production code [145]. Panichella et al. [146] propose to use optimization heuristics like
purification [147], carving [148] or slicing [149] to improve generated tests by focussing
them on one, semantically coherent scenario.

Checks Behavior of Newly Covered Code
Our next guideline concerns the assertions of the amplified tests, which should check the
behavior of the newly covered code. It is well known that structural coverage can give an
indication whether a test suite is bad, but does not indicate error detection and prevention
strength [40, 150, 151]. The ability to reveal faults in the targeted production code is a
criterion in Grano et al.’s quality factors for unit tests [61]. A miss-match between the act
and assert phase of a test was one of the quality issues Galindo-Gutierrez et al. detected in
tests generated by EvoSuite [152]. To address these issues, we could employ more refined
metrics to select the amplified tests, such as checked coverage [153], oracle adequacy [154],
or mutation score [155]. However, one must way the trade-offs regarding runtime, because
such stronger metrics are generally more expensive to compute (Chapter 5). For mutation
score, limiting the mutants to relevant lines [156], i.e., the additionally covered lines, could
be an option to speed up computation. On the other hand, Zhang et al. [150] found that
human-written assertions are stronger at detecting seeded faults than assertions generated
by the tool Randoop [14].

Test Scenario and Impact are Understandable
The understandability of tests, or lack thereof, is mentioned in several user-involving
studies on automatic test generation [35, 45, 47]. Code reviewers are concerned with
the understandability of test that are contributed [59]. The understandability of a test is
impacted by test names [31–33], variable identifiers [29, 34, 157], meaningful comments or
summaries [34, 35], and the test data [73, 92, 158–160]. Lin et al. showed that the quality
of identifier names is low in manually written and especially automatically generated
tests [157]. The concern with readability of generated tests is a central motivation for
the development of language model based test generation approaches [19, 161]. However,
it was also shown that the judgment how readable a test is differs per developer [160],

4.5 Discussion

4

87

and that experience influences the test comprehension process [92]. Daka et al. observed
that developer-given test names could contain abstract knowledge about the test intent
or scenarios, which was not the case for their generated names that focused on covered
methods and asserted values [32].

Good Code Style, Adhering to Guidelines
Our guideline to ensure that the amplified tests have a good code style and adhere to the
coding guidelines of a project, can also be observed in more general code review practices
that require consistency of code style [162, 163]. Specifically for assertions, Zamprogno
et al. found that developers prefer assertion statements that are consistent with the code
style of the test suite [164]. While explicit guidelines on how to contribute to open source
projects are more and more common [165], these documents often do not sufficiently
reflect the whole process [166, 167] and especially lack information about not automatically
checkable guidelines [168].

Appropriate Scope and Location
The final guideline in our list is to ensure that an amplified test has an appropriate scope
and is in the right location within the code base. A too large scope, i.e., too much tested
in one method, can be the test smell “Eager Test” [144] or a sign of lacking semantic
coherence [146]. It also can make the test long, which negatively impacts understandabil-
ity [29, 40]. Existing literature recommends that test code should be well-modularized and
structured [40, 158]. Duplication of test setups over multiple tests is an indication of code
clones hindering the maintainability of test code [152], which can be the motivation to
merge an amplified test with an existing test from the test suite.

4.5.3 Implications for Practitioners
In this chapter, we characterized the selection and editing steps developers are likely to
conduct before incorporating amplified tests into their maintained test suite. For software
developers and project managers, our results can be the basis to take an informed
decision on whether to adopt developer-centric test amplification, by providing a
realistic view on the kind of adjustments required by developers. We divide these efforts
into two groups: (1) actions that could be automated by customizing the test amplification
to a project, and (2) actions that highly benefit from the developer’s comprehension.

To the first category, we count the coverage false positives, additional coverage in not-
test-worthy methods, adhering to code style guidelines, and using defensive programming
constructs. If a software developer applies test amplification out of the box, without any
further customization, they would run into these issues, such as we did during our study.
However, if the project would commit to a longer use and invest the time in configuring
and customizing the amplification tool for their project, such efforts can potentially be
automated.

The other set of efforts require the software developers to understand the amplified
test—which they aim for already before accepting the test. These efforts are about changing
the scenario of the test to be simpler or more meaningful, removing left over code, moving
or merging the test, or adding a clearer test name. With these, the test becomes easier to
understand, therefore easier to maintain and more helpful when trying to locate the fault

4

88 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

when the test fails. These changes have a large impact on the quality of the resulting test,
addressing commonly observed shortcomings of automatically generated tests [29, 45, 47].

4.5.4 Implications for Researchers and Tool Designers
Previous user studies on test generation and amplification have shown that software
developers find it important to understand the produced tests [45, 46], (Chapter 2). Un-
derstanding the tests was also necessary for us when selecting and editing the amplified
tests, just as for the maintainers, who asked for additional clarification when the test or
the pull request description were not clear enough. During this study, we elicited several
adjustments to amplified tests that require an understanding of the behavior of the test. We
conjecture, that such edits are much easier for developers to perform than for an automated
tool. The next step for researchers would be to investigate whether test amplification
collaborating with the developer for changes that require understanding is an effective
alternative to automating them.

Because understanding is a prerequisite for the developer’s manual edits, we conjecture
that it is crucial for developer-centric test amplification tools to provide the information
that developers need to understand and modify the amplified tests. As we saw
in Section 4.4.5, the descriptions we generate are one component that contributes here,
pointing to the amplified changes and the additionally provided coverage. However,
throughout our study we experienced that further information support is necessary. For
example, visually connecting the methods called in the test with the additional coverage
could help developers understand how the amplified test provides this coverage (Chapter 3).
Developers would also benefit from knowing which other tests cover the same method [35,
94], to determine the difference to these tests, or to validate if all scenarios of a method are
tested. When we performed changes to the test scenario, we were at times not sure whether
the coverage reported by the test amplification tool is still provided. We hypothesize that a
close integration of test amplification and manual editing would let the developer
verify their changes in the terms of the test amplification tool.

While we plead to leverage the developer’s understanding and expertise to collabo-
ratively produce valuable tests, our results also point to possible improvements of the
automatic amplification process. During our selection we encountered tests where the
generated assertion was not checking the behavior of the newly covered code. One could
apply local mutation analysis to verify that an assertion is really checking the
additionally covered code, similar to Ma et al.’s commit-aware mutation testing [156].
This means applying mutations only to the newly covered code and evaluating whether
they cause the amplified test to fail. This approach would have a better performance
than selecting amplified tests on mutation score directly, and we could still use the more
widely understood instruction coverage when communicating the value of a test to the
developer [169].

We encountered amplified tests that are based on complex, manually written tests
whereas their tested scenario did not need this complexity. We propose to improve test
amplification by smartly selecting the original test to modify, starting from simple
tests and continuing to more complex ones. This way, the simple cases that can be tested
through test amplification are caught with simple original tests, and the more complex
original tests are only used if the amplification covers scenarios that need this complexity.

4.5 Discussion

4

89

In the edits we conducted ourselves, as well as the ones proposed by maintainers, we
moved tests to other classes, because the test target of the amplified test was no longer the
same as the target of the original test. Clearly identifying the target of an amplified test
would empower amplification tools to propose a better location for the produced test, and
to communicate the intended impact of the amplified test clearer to the developer. From
our observations, the tests were moved to test classes that are related to the additionally
covered methods, or related to the methods directly called in the test.

4.5.5 Threats to Validity
There are several threats to the validity of our results:

Reliability of Results
To ensure the consistency and reliability of our qualitative analysis’ findings, the first
two authors revised the emergent codes throughout discussions until they reached a
negotiated agreement [134]. We also employed constant comparison [136], whereby each
interpretation and finding is compared with existing findings as it emerges from the data
analysis to increase the construct validity. Especially for the manual selection and edits
we conducted ourselves (adressing RQ1), the background of the researchers might have
influenced which issues we identified in the amplified tests. Present are the threats of
confirmation bias and experimenter bias, where our previous experience of issues with
amplified tests leads to us overly focussing on these issues. Independent evaluators with a
different background with regards to test generation might have identified other issues.
Even when considering the presence of these biases, we deemed the manual selection
and editing necessary to avoid antagonizing the open source maintainers by submitting
tests that are clearly not ready to be merged. To mitigate the impact of our background,
we carefully structured and documented our selection and editing process through the
checklists that form the answers to RQ1.1 and RQ1.2 and invite other researchers and
software engineering practitioners to replicate our study and compare their findings.

Construct Validity
The deficiencies we observed in the amplified tests are closely related to the current state
of the test amplification tool DSpot. It is the state-of-the-art for test amplification in
Java, and the archetypical implementation of test amplification that other tools are based
on [123, 170, 171]. Still, the selection and edit efforts will change when the automation
improves in the future. If efforts we observed are automated, developers might be willing to
make new kinds of changes to improve the amplified tests. Because we manually selected
the amplified tests to submit in pull requests and edited half of them to improve their
quality before submitting, the results to RQ2 do not directly reflect current amplified tests,
but rather what test amplification might be capable of in the future. To mitigate this, we
carefully document and report the selection and editing checklists we used in the answers
to RQ1 and pull our take-away recommendations on both our manual efforts and the
maintainers’ feedback in the pull request discussions.

Participant Bias
We did not reveal that the tests were at least partially automatically generated, and the
maintainers’ feedback might change if they were aware of this. The maintainers could also

4

90 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

face a social desirability bias, answering in a way that they expect us or their surroundings
to prefer. To mitigate this we did not reveal our exact research questions to them, and
conducted the study in their familiar environment of pull request discussions.

Internal Validity
In most of the pull request discussions the maintainers did not communicate their rationale
for accepting or rejecting the pull request. We hypothesize that such a judgment is based
on a plethora of factors, e.g., the code quality or the coverage contribution. As visible in
Table 4.1, our study includes a diverse set of projects, whose individual size, contributors,
or general interaction with pull requests, might influence the acceptance of a pull request.
To mitigate the threat of inferring too much from the pull request outcome, we focused
our analysis on the concrete discussion comments from the project maintainers.

Generalizability
The threat of internal generalizability concerns whether the sampled study objects are
representative of our population of interest: open-source Java projects. We only considered
projects where DSpot did not fail during execution, and produced amplified tests within
30min. Other software projects might need a considerably higher up-front effort to adapt
the test amplification tool before they can apply it and show a different set of deficiencies
in the produced tests. Projects that need more than 30min to build or use external tools
that cannot be set up with DSpot’s plain Maven or Gradle support, might show a unique
set of selection criteria and change wishes from the developers. To mitigate this threat, we
focus on providing an overview of the possible selection and change efforts that developers
can encounter. While we specify how often each of them occurred in our study, we refrain
from hypothesizing how likely they would appear in any project.

With respect to external generalizability and external validity, we acknowledge the
need for replication studies with other programming languages, test frameworks or project
settings. The feedback from maintainers of less active projects could differ, and industrial
projects could have different requirements for automated tests.

4.6 Related Work
In another open source contribution study [13], Danglot et al. showed that DSpot is able to
provide valuable additions to existing test suites by amplifying tests. They amplified 40 test
classes of 10 projects and opened 19 pull requests of which 13 were accepted. Compared to
their study, we focus on comprehensively documenting which kind of manual adjustments
are necessary before submitting an amplified test, conduct our study on a larger number
of repositories and pull requests, and present a detailed analysis of the feedback from the
open source maintainers. We previously conducted an exploratory study evaluating an
IntelliJ plugin to facilitate developer-centric test amplification from within the developer’s
IDE (Chapter 2). While we gathered a broad variety of feedback through interviews with
developers, this work focuses on the concrete changes that maintainers and code owners
would make to the amplified tests, independently of IDE tooling.

There have been several studies of search-based test generation with EvoSuite that
involved users [45–47]. Our findings corroborate several results from these studies, such
as the importance of readability for the developers [45, 47], that the quality of a test is

4.7 Conclusion and Future Work

4

91

strongly connected to how easy it is to elicit its behavior [47], and a diversity of preferences
for tests between different developers [47]. Daka et al. [29] established identifiers, line
length and constructor and method calls as important features of the readability of a test.
We go further into analyzing what a developer would change to obtain a satisfactory test
from a, potentially less readable, generated one. Similar to us, Almasi et al. [45] asked the
participants of their industrial case study what they would change in the generated tests
to keep them. Our findings corroborate their results that developers would change the test
data, or scenario, and the assertions to more meaningful ones. In contrast to their study,
our open source contribution study spreads over a larger variety of projects. We point to a
greater diversity of concrete changes that were important to the projects we contributed
to, such as aligning with code style conventions, or moving and merging tests.

In a large-scale, manual study of EvoSuite generated tests, Galindo-Gutierrez et al. [152]
identified 13 new quality issues in automatically generated test cases, which are not
covered by the previous definitions of test smells [144, 146, 172]. While our study is based
on a different test generation approach and tool, several of their quality issues coincide
with the deficiencies we observe in DSpot amplified tests, and which we recommend
developers to consider when selecting and editing amplified tests. They name three quality
issues concerning a mismatch between the act and assert sections of the test case, which
correspond to our observations of unrelated amplified change, additional coverage or
generated assertion (RQ1). Our filter criterion “No Explicitly Thrown Exception” is also
present in their list of quality issues. A set of their collected issues does not apply to the
approach of test amplification, where one test is generated and then integrated into an
existing test suite. These issues concern code and test scenarios that are redundant between
the many tests EvoSuite generates, or violate the stricter unit testing paradigm aimed at by
EvoSuite, i.e., only testing behavior directly in the class under test.

Incorporating the developer’s expertise into the test amplification process, is also
central in interactive search-based test generation [78, 173, 174]. In contrast to this field,
we do not ask the developer to provide specific types of judgments to improve the search
process, but instead they customize the amplified test to its final state for their test suite.

Several previous works investigated generating descriptions for automatically gener-
ated [34, 35, 175] and manually written tests [72, 176] and have shown that these descrip-
tions help developers understand the tests [34, 35, 72]. Similar to us, these approaches
leverage the called and covered methods to describe the intention of the test case. Our
description is specialized for amplified tests, focussing on the amplified change and new
assertion, while referring to the original test, leading to a shorter description.

4.7 Conclusion and Future Work
In this chapter, we manually analyzed the amplified tests of 52 projects, and discussed them
through 39 pull requests with their open source maintainers. In a nutshell, we contribute:

• Insights into the selection and manual editing we performed to prepare the amplified
tests for a pull request.

• Insights into the proposed changes, requested information and judgment of open
source maintainers towards developer-centric amplified tests.

4

92 4 Shaken, Not Stirred. How Developers Like Their Amplified Tests

• Improvements to the test suites of 19 open source projects through our accepted pull
requests.

Throughout the whole study we repeatedly observed that amplified tests need to be un-
derstood by developers before they consider including the tests into their maintained test
suite. This understanding was also the basis for several kinds of edits we made and changes
that were proposed by the maintainers, opening up a fundamental question for researchers
working on developer-centric test amplification:

Should we focus on further automating test amplification or focus on supporting
developers in understanding the amplified tests, leaving some edits to them?

Therefore, the next steps in this line of research are to investigate this tradeoff and to
develop tools that support developers with information and actionable recommendations
while editing amplified tests. Further, we want to improve the state-of-the-art of test
amplification by automating the now manual efforts and by sharpening the quality of the
amplified tests through local mutation analysis. We encourage researchers to validate
whether our results hold for other programming languages and test generation tools.

5

93

5
When to Let the
Developer Guide:

Trade-offs Between
Open and Guided

Test Amplification

Test amplification generates new tests by mutating existing, developer-written tests and

keeping those tests that improve the coverage of the test suite. Current amplification tools

focus on starting from a specific test and propose coverage improvements all over a software

project, requiring considerable effort from the software engineer to understand and evaluate

the different tests when deciding whether to include a test in the maintained test suite. In

this chapter, we propose a novel approach that lets the developer take charge and guide the

test amplification process towards a specific branch they would like to test in a control-flow

graph visualization. We evaluate whether simple modifications to the automatic process

that incorporate the guidance make the test amplification more effective at covering targeted

branches. In a user study and semi-structured interviews we compare our user-guided test

amplification approach to the state-of-the-art open test amplification approach. While our

participants prefer the guided approach, we uncover several trade-offs that influence which

approach is the better choice, largely depending on the use case of the developer.

This chapter is based on C. Brandt, D. Wang and A. Zaidman. When to Let the Developer Guide: Trade-offs

Between Open and Guided Test Amplification, IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), 2023 [55]. The design, implementation and experiments were conducted by Danyao Wang
during her Masters Thesis under the supervision of Carolin Brandt and Andy Zaidman.

5

94 5 Trade-offs Between Open and Guided Test Amplification

S oftware testing is one of the central activities in the software development lifecycle [58].
One part of this are developer tests, i.e., small automated programs that software

developers write to check that their code behaves as they intend and prevent it from
breaking in the future [3]. While developer testing is widely seen as valuable, it is also a
tedious and time-consuming activity [8]. One automated approach to relief developers
of this manual effort is test amplification. Test amplification mutates existing, developer-
written tests to explore new behavior of the code under test [42]. Previous studies have
shown that it can provide valuable tests to developers [13, 21], [Chapter 2], but at the cost
of long runtimes [21], [Chapter 2] and effort for the developers to understand the behavior
and impact of the amplified tests [36], [Chapters 2 and 3]. Let us illustrate this with an
example:

Masha, a software developer, is working on a new feature of their software
project, that requires small changes in their existing code. Before submitting a
patch, she needs tests that cover all her new code, so she decides to use test
amplification to generate them automatically. She picks an existing test from
the class she worked on and asks the tool to create new tests based on it. After
a while the tool reports back and proposes several tests to her. Unfortunately,
the class did not have a high test coverage, so she has to sift through quite a
few tests spending time to understand what code they cover and realize it is
not the code she is concerned with. Even for the tests that target her code, she
has to switch between several methods under test and every time recall what
behavior this method should have, so she can judge whether the generated
test is correct.

Figure 5.1: Interaction with our original test exploration IDE plugin for open test amplification [Chapter 2].

Our hypothesis is that these understandability issues are in part rooted in the disconnect
between the present point of interest of a developer in the code base, and the dispersed
coverage contributions amplified tests are providing, i.e., they need to rebuild the task
context [177]. To bridge this disconnect, we propose to involve the software developer

5

95

more tightly in the test amplification process. Ideally, they can convey what piece of code
they are interested in to test and then the test amplification presents only those tests that
are relevant for the focus of the developer.

In this chapter, we propose a novel approach of user-guided test amplification. Starting
from a method in their code base, the developer can initiate the test amplification and
choose in a visualized control-flow graph which branch of the method should be tested.
The test amplification is then directed to call this method specifically, and generates a
variety of tests for it. It measures the tests’ branch coverage and presents all tests that cover
the intended branch to the developer, using the same control-flow graph visualization to
help the developer understand how the test executes the method under test.

We conduct a technical case study and a user study to understand the impact and
potential use of user-guided test amplification.1 In both studies we compare it to the existing
test amplification approach [13], [Chapter 2], which we will call open test amplification for
a clearer distinction. With our technical case study on 31 classes from two open source
projects, we investigate whether our simple changes in the guided amplification process are
indeed effective at producing a higher ratio of tests for the targeted branch, and whether
to guidance enables us to cover more branches overall in a project. Our findings from this
study answer our first research question:

RQ1: How effective does guided test amplification generate tests for targeted
branches (compared to open test amplification)?

In our user study, 12 developers apply both approaches to two classes and we interview
them about their experiences. From this, we learn how they perceive each technique and
their considerations when comparing them to each other. Our observations address our
second research question:

RQ2: How do developers perceive guided test amplification (compared to open test
amplification)?

Our two evaluation studies show that user-guided test amplification does deliver on the
intended goals of making the test amplification process more effective and the coverage
of the amplified tests easier to understand. However, the studies also show that the user-
guided version of test amplification is not always better. From the participant’s explanations
during the interviews we learned that user-guided test amplification is closer to the real-life
process of developing and testing new code where the developer focuses on a specific
feature, writing code and tests for it. On the other hand, open test amplification is more
suited when focusing on improving the test suite for an already existing code base, as
it connects new tests clearer to the already existing tests. This is one example of the
trade-offs between open and user-guided test amplification that our studies make apparent.
We discuss all trade-offs we encountered to help the reader understand the strengths and

1We follow the empirical standard for engineering research: https://acmsigsoft.github.io/
EmpiricalStandards/docs/?standard=EngineeringResearch

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=EngineeringResearch

5

96 5 Trade-offs Between Open and Guided Test Amplification

weaknesses of both approaches, and to help developers choose which approach fits best to
their goals and workflow.

Figure 5.2: Interaction with user-guided test amplification.

5.1 Test Amplification
In this section, we introduce the concept of (open) test amplification, which is realized in
the state-of-the-art test amplification tool for Java called DSpot [13].

The aim of test amplification is to generate new tests by leveraging the knowledge
in existing, human-written tests [42]. These new tests improve the existing test suite
with respect to a defined engineering goal, e.g., structural coverage or mutation score.
Our work is based on our original design of developer-centric test amplification, which
focuses on generating short and easy-to-understand tests to be included into the developer’s
maintained code base [Chapter 2].

A central part of developer-centric test amplification is to combine the automatic test
amplification with a test exploration tool that guides the developer’s interaction with the
test amplification. Figure 5.1 illustrates the workflow with their prototype in form of
an IDE plugin. The developer starts by selecting an original test to be the basis for the
amplification 1⃝ and requesting the plugin to amplify that test 2⃝. When the amplification
finishes, it notifies the developer 3⃝ that they can start exploring the generated tests. The
exploration tool presents to the developer the additional coverage that an amplified test
provides 4⃝, the code of the test 5⃝, and action buttons to easily add the test into the test
suite or browse through the list of amplified tests 6⃝.

The automated process behind test amplification (see the upper half of Figure 5.3)
starts from an original test which comes from the existing, manually written test suite
of a software project. We mutate the input phase of the test with several amplification
operators: changing literal values slightly or replacing them with random values, as well as
adding, duplicating or removing method calls to the objects under test. The old assertions
are replaced by new ones which use the current behavior of the system as the oracle. Then,
we execute all new tests and measure their instruction coverage. The tool selects all tests

5.2 User-Guided Test Amplification

5

97

that cover new instructions compared to the existing test suite and presents them to the
developer.

 Mutate
Input

 Select Tests that
Improve Coverage

Amplified
Tests

Call Targeted
Method

In the Targeted Branch

Open Test Amplification

Modifications
for Guided Test
Amplification

Generate
Assertions

Original
Test

Figure 5.3: The automated process behind open test amplification and modifications to it for guided test amplifi-
cation.

The interaction and the underlying amplification process starts from a developer-
selected original test, randomly mutates it and keeps all new tests that cover new instruc-
tions anywhere in the project under test. We coin it open test amplification as it openly
looks for any new tests that could be valuable for a project.

Previous studies on open test amplification showed that with this approach, it is
difficult for the users to connect the test to the code under test it covers [Chapters 2
and 3]. Also, not all uncovered code is equally important to be tested in the opinion of the
developers [Chapters 2, 4 and 6] When we originally proposed this approach, we had to
take several design decisions that limit the power of the amplification, in order to make
it fast enough to be interactively used [Chapter 2]. To address these shortcomings, we
propose to let the developer take the lead and guide the test amplification towards the code
they find relevant to be tested.

5.2 User-Guided Test Amplification
To speed up the process of finding new tests and make it easier for the developer to un-
derstand the context of the generated tests, we propose to let the developer direct the test
amplification to the specific code they want to test. We call this approach user-guided test

amplification and build it upon the developer-centric implementation of DSpot [13], [Chap-
ter 2].

The developer starts by selecting a method in the code under test which they would
like to test (see 1⃝ in Figure 5.2). Then, the test exploration tool presents them with a
control flow graph of that method, similar to the graph shown at 2⃝. The graph shows
the execution structure of the method through boxes for each statement and condition,
connected with arrows. The arrows annotated with “True” or “False” represent branches
in the control flow of the method, letting the developer see the different scenarios that
might need testing. We compute the existing test coverage for the method and highlight
the branches that are already covered in green, and those that are not covered in red. The
developer can select the branch that they would like to cover and start the test amplification.
The tool automatically looks for the corresponding test class and picks the first—often most
simple—test as the original test for the amplification. If no corresponing test class or test
can be found, the tool prompts the user to create a test and invoke the amplification again.

5

98 5 Trade-offs Between Open and Guided Test Amplification

When inspecting the result, the test exploration tool reuses the same control flow graph
to show the developer the additional coverage that the amplified test provides 3⃝. The
developer can then decide whether to add the test to the test suite or to continue exploring
the other tests or invoke the tool again for other branches.

We add two simple modifications to the underlying automated test amplification process
to incorporate the guidance provided by the developer. The lower half of Figure 5.3
illustrates the modifications we make to the open test amplification process. As the first
modification to the input of the original test, we call the method selected by the developer
with randomly generated values for the parameters. When an object is needed, DSpot looks
for a public constructor and uses it with random values to initialize the object. Then we
continue by randomly mutating the test input as with open test amplification. All produced
tests that cover the branch selected by the developer are selected as results to be presented
to the developer.

We intentionally make simple modifications and largely rely on the amplification
operators available in the base tool DSpot, e.g., the random generation of parameter values
for object initialization. Our aim is to see whether such simple changes can already be
effective to improve test amplification before considering more complex and runtime-
impacting alternatives.

5.3 Evaluation
To evaluate our proposed user-guided test amplification, we conduct two comparative
studies: a technical case study and a user study. Our first goal is to judge the effectiveness
of our technical changes to the test amplification process: does the guidance lead to a larger
proportion of the generated tests covering the targeted branch compared to using open test
amplification (RQ1)? The second goal is to elicit the opinions of developers on interacting
with user-guided and open test amplification (RQ2).

RQ1: How effective does guided test amplification generate tests for targeted
branches (compared to open test amplification)?

RQ2: How do developers perceive guided test amplification (compared to open test
amplification)?

To answer RQ1 we conduct a technical case study, where we apply both approaches
to generate tests for 100 branches sampled from 31 classes of two open source projects.
We analyze the ratio of amplified tests fulfilling our coverage goals to determine which
approach is more effective. To answer RQ2 we perform a user study with 12 developers
that apply both open and guided test amplification to test two classes. Then we interview
each participant to elicit their impression of each approach and how they compare to each
other.

5.3.1 Design Technical Case Study
In our technical case study, we sample code branches from two open source projects and
apply both guided and open test amplification to try to cover them. We measure how many

5.3 Evaluation

5

99

branches can be covered at all by each approach, and what percentage of the amplified
tests generated in one run cover the targeted branch.

We select two open source projects as study objects: Javapoet 2, a library to generate
java source files, and Stream-lib 3, a library for summarizing data in streams. An important
selection criterion was the traceability from code to tests: in both projects we can identify
the matching test class for a class, because they adhere to consistent naming conventions.
To select the targeted methods under test, we pick all classes with a clearly identified
test class and from these classes select all public, non-static and non-abstract methods,
which are the methods that can be called by DSpot’s amplification operators. Taking all
branches from the selected methods under test (160 from Javapoet, 264 from Stream-lib),
we randomly sampled 100 branches per project. From their matching test class, we take
the first test as the original test method for the amplification.

We run both guided and open test amplification for each of the sampled branches,
limiting the number of produced tests to 200 per run. Next, we collect all resulting tests as
well as their coverage information. Per project, we calculated the ratio of covered branches
over the sampled branches (Equation (5.1)).

𝑟𝑎𝑡𝑖𝑜 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 =
𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑
𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

(5.1)

We calculate for each approach per project the average ratio of successful tests (Equa-
tion (5.2)) over all runs. The ratio of successful tests looks at how many of the returned
amplified tests do indeed cover the targeted branch.

𝑟𝑎𝑡𝑖𝑜 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓 𝑢𝑙 𝑡𝑒𝑠𝑡𝑠 =
𝑡𝑒𝑠𝑡𝑠 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑏𝑟𝑎𝑛𝑐ℎ

𝑡𝑒𝑠𝑡𝑠 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑
(5.2)

5.3.2 Results Technical Case Study
Table 5.1 shows the calculated effectiveness of guided and open test amplification in
comparison. We see that the guided test amplification can cover more branches in both
projects, but the difference is small, and neither approach can cover more than 41% of the
sampled branches. This shows that guiding the test amplification by explicitly calling the
method that contains the targeted branch is only marginally helpful in covering a larger
variety of branches of a project.

Table 5.1: Ratio of covered branches (see Equation (5.1))).

Javapoet Stream-lib
Open Test Amplification 23% 35%
Guided Test Amplification 32% 41%

To understand why many branches could not be covered by either test amplification
approach, we manually inspected the branches that could not be covered. A core reason
2https://github.com/square/javapoet
3https://github.com/addthis/stream-lib

5

100 5 Trade-offs Between Open and Guided Test Amplification

for not covering a branch was that the objects under test or the target method parameters
are not initialized with the right values. In some cases, this came from the amplification
tool not supporting the parameter’s type, e.g., for a class without a public constructor.
Then, the tool sets the parameters to null or empty values, which lead to exceptions when
trying to generate assertions. We saw that Javapoet’s classes have more methods whose
parameter types are classes without public constructors, while Stream-lib mostly works
with simple data types for the parameters. As the amplification tool’s implementation does
not support initializing classes without public constructors, this could explain why the
amplification is more effective on Stream-lib than on Javapoet. Similarly, generating tests
for faults or locations that require complex input objects is challenging for search-based
tools like EvoSuite [45].

We investigated whether the choice of the original test impacts the ability to cover a
certain branch. For this, we sampled ten branches that were not covered by the amplification
and also not the existing test suites. Then, we amplified all tests in the corresponding test
class, but still could not generate tests that cover the sampled branches. This shows that
selecting different initial tests likely does not impact how effective the test amplification
is at covering the sampled branches. The earlier mentioned likely cause for not covering
the branches, not being able to generate the right initialization for the objects under test,
seems to not be solved by selecting different initial tests.

Table 5.2 shows how many of the tests generated in one run of guided and open test
amplification cover the targeted branch. While the ratio of tests that successfully cover
the targeted branch with open test amplification is only 24% for Javapoet and 45% for
Stream-lib, for guided test amplification this ratio is 70% for both projects. These results
show that the guided test amplification is substantially more likely to produce tests that
cover the targeted branch. This indicates, that the simple guidance we implemented into
the guided test amplification—calling the method containing the targeted branch—is indeed
effective at guiding the test amplification towards our target. Therefore, using guided test
amplification enables us to set the amplification to generate fewer tests, while still having
a good chance at receiving a test that covers the targeted branch.

Table 5.2: Average ratio of successful tests, which cover the targeted branch (see Equation (5.2)).

Javapoet Stream-lib
Open Test Amplification 24% 45%
Guided Test Amplification 70% 70%

Looking how the ratio of successful tests is distributed over the sampled, targeted
branches (Figure 5.4), we see clear differences between the projects. While in Javapoet the
distributions are dense and the higher effectiveness of guided test amplification is clearly
visible, for the Stream-lib project the ratio of tests successfully covering the targeted branch
differs much more significantly from branch to branch. One possible explanation for this
difference is that number of methods in Javapoet’s classes is higher than in Stream-lib.
This means that it benefits more from the modification in guided test amplification that
explicitly calls the method under test before the further input mutation.

5.3 Evaluation

5

101

Figure 5.4: Distribution of the ratio of successful tests (see Equation (5.2)).

5.3.3 Answer to RQ1: How effective does guided test amplifi-
cation generate tests for targeted branches (compared
to open test amplification)?

Summarizing the results of our technical case study, we can see that guided test amplifi-
cation is more effective than open test amplificationwhen covering a specific targeted
branch. However, both approaches fail to cover the majority of the sampled branches and
depending on the project there can be a large variety in the ratio of generated tests covering
the targeted for both approaches. We will discuss and interpret these observations together
with the insights from our user study in Section 5.4.

5.3.4 Design User Study
Our central ideas for guided test amplification were motivated by the interaction with the
user: the developer initiates the test amplification and guides it towards a method and
branch, reducing the search space for new tests. In addition, this should help the developer
understand and review the generated tests, because they already built up the necessary
mental task context of the method unter test [177]. To elicit the opinions of developers on
the use of guided test amplification in comparison to open test amplification, we conduct a
study.

The user study starts with a questionnaire collecting demographic information and
informed consent from each participant. Then, the participants are introduced to the
concept of test amplification and asked to generate tests for two classes with similar
complexity taken from the open source project Stream-lib. Each developer applied both
open and guided test amplification, and we equally shuffled the order of the approaches and
which class they test according to the four groups in Table 5.3. After the participant solved
both tasks, we conduct a semi-structured interview. Guided by a list of closed questions
(see Figures 5.5 and 5.6) we ask the participants to reflect on their experience with the open
and guided test amplification, to compare both approaches and to express their overall
impression of the amplified tests.

We conducted the study fully remotely in sessions of 60min to 90min. We recruited

5

102 5 Trade-offs Between Open and Guided Test Amplification

12 participants through convenience sampling in our professional networks and on social
media. You can find the complete tasks and questionnaires in our online appendix [178].
Our study design was approved by our local ethics review board.

Table 5.3: Task ordering for our participant groups.

Group First Task Second Task

1 User-Guided Test Amplification
StreamSummary

Open Test Amplification
ConcurrentStreamSummary

2 User-Guided Test Amplification
ConcurrentStreamSummary

Open Test Amplification
StreamSummary

3 Open Test Amplification
StreamSummary

User-Guided Test Amplification
ConcurrentStreamSummary

4 Open Test Amplification
ConcurrentStreamSummary

User-Guided Test Amplification
StreamSummary

5.3.5 Results User Study
From the demographic questionnaire, we learn that we have a relatively young population
of 12 participants with a development experience of one to three years (7), four to six
years (4) and seven to nine years (1). Two of the participants had used an automatic test
generation tool before. Their main programming languages were Python (6), Java (4),
or C++ (3), and they mainly identified as working in general software development (4),
research (2) or data and analytics (2).

Guided Test Amplification
Looking at the feedback regarding the guided test amplification, presented in Figure 5.5,
the participants strongly agree that the control flow graph showing the coverage of the
target method is easy to understand (Q1). When asked whether the information provided
is valuable, the participants strongly agree (Q2) and point out that the primary value is in
visualizing the code structure and coverage, especially when the complexity of the method
under test is high. Question (Q3) centers around whether the control flow graph effectively
lets the participants convey their expectation of what to cover to the amplification. On
average the participants agree to this, pointing out that it also helps identify all scenarios
that are possible when calling the method under test.

They agree that the same visualization is also easy to understand when it comes to
showing the coverage of an amplified test (Q4), and helps to select which amplified test
to keep and add into the test suite (Q5). In this selection process, the visualization was
especially helpful when the amplified tests provided diverse coverage contributions in
methods with many branching points. Two participants were neutral about using the
control flow graph to select a test, pointing to that they only want to cover the previously
selected branch and rather focus on the code of the amplified test instead when selecting
or add the test without further inspection.

Open Test Amplification
When it comes to the open test amplification, our study participants are more divided, but
on average agree that the text-based instruction coverage explanation is easy to understand

5.3 Evaluation

5

103

(Q6, Q7) and provides useful information (Q8). The main complaints were that listing each
occurrence of new instruction coverage was too detailed and that the connection between
the test and the covered instructions was not clear even with the provided hyperlinks. The
participants that were positive found the class and method names informative and liked
that the hyperlinks let them locate the code under test conveniently. We asked whether the
provided information about the amplification mutations in the test (Q9) and the additional
coverage (Q10) helped the developers select which test to keep. The participants on average
agreed that the additional coverage is helpful to select which test to keep (Q10). However,
they criticized that they could not see the existing coverage to judge if a line in the code
under test is already covered or not. One participant also thought out loud about whether
the provided coverage is actually important coverage.

Both Approaches Compared
After discussing each amplification approach separately with our participants, we asked
several questions to compare both approaches (see Figure 5.6). Directly asked whether
the instruction coverage of open test amplification or the branch coverage of guided test
amplification is easier to understand, all participants prefer the branch coverage (Q13). The
participants found it easier to map the branch coverage to the source code structure. Some
were also not familiar with the concept of instruction coverage and struggled to identify
the single instructions in a line of code. Most participants prefer the visualized control flow
graph over representing coverage as highlights in the editor (Q14). Using the visualization
they did not need to read the source code of the method under test.

We asked the developers to reflect which approach helps them more during test gener-
ation (Q16) and they were divided between the two approaches. Seven participants prefer
the guided test amplification as it is closer to writing tests in real-life scenarios, where
they focus on specific features to cover. Two participants prefer open test amplification:
one proposes to use it early in the test creation process to cover as much code as possible,
the other focuses on connecting a new test with the existing ones it is based on, which
is clearer during open test amplification. Three participants were neutral and voted to
combine the two approaches. When they do not have a specific coverage goal they would
use open test amplification, while they would choose the guided test amplification when
they aim for more control over each tests’ coverage.

Regarding selecting which resulting test to incorporate into the test suite, the partici-
pants mainly prefer the guided test amplification (Q15). The ten participants voting for
guided test amplification mention that when writing tests they usually have a specific
feature in the code they want to cover, which they can achieve by guiding the test amplifi-
cation. One participant prefers open test amplification as they focus on covering the whole
project as much as possible and want to compare the different tests based on their total
contributed coverage. One participant is neutral and would use both approaches depending
on the situation.

Finally, we asked about their overall impression of the amplified test, which was positive
(Q11, Figure 5.5). The participants on average strongly agree that they would use test
amplification again (Q12) and gave a variety of suggestions on how to improve the tools
for both test amplification approaches. One aspect they noted positively is that the tool
clearly indicates when it could not generate a test for a selected branch, which made these
situations less negative in the participants’ opinion.

5

104
5
Trade-offsBetw

een
O
pen

and
Guided

Test
A
mplification

Q5 The the Control Flow Graph and branch/line coverage is helpful when you select tests.
Q4 The test generation results displayed with the Control Flow Graph are clear and easy to understand.

Q3 The interaction with the Control Flow Graph effectively assists you in conveying your test expectations.
Q2 The Control Flow Graph of the method under test provides valuable information.

Q1 The Control Flow Graph of the method under test is easy to understand.
Strongly disagree Disagree Neutral Agree Strongly agree

Q10 The instruction coverage and highlighting code are helpful when you select tests.
Q9 The information on modifications applied to tests are helpful when you select tests.

Q8 The test information provides valuable information.
Q7 The generation result displayed with additional instruction coverage is clear and easy to understand.

Q6 The instruction coverage and corresponding code highlighting is easy to understand.

0% 20
%

40
%

60
%

80
%

10
0%

Q12 You would want to use the tool to help you write tests in the future.
Q11 The amplified test cases provided by the tool satisfy your expectations.

Figure 5.5: Participant answers on each of the two amplification approaches and test amplification in general.

Q13 Which type of coverage is easier to understand?
Instruction Coverage Neutral Branch Coverage

Q14 Which display form of coverage is easier to understand?
Text Neutral Control Flow Graph

0% 20
%

40
%

60
%

80
%

10
0%

Q16 Which type of test amplification is more helpful for you to generate test cases?
Q15 Which type of test amplification helps you select the amplified test cases more?

Open Test Amplification Neutral User-Guided Test Amplification

Figure 5.6: Participant answers on comparing user-guided and open test amplification.

5.3 Evaluation

5

105

5.3.6 Answer to RQ2: How do developers perceive guided test
amplification (compared to open test amplification)?

Looking at all the results of our user study, we see that a majority of our participants
prefer the user-guided test amplification approach (Q16) because it fits better into the
typical situation they create tests in: when they want to test a specific location in their
code. Factors contributing to this judgement are that all participants found branch coverage
easier to understand than instruction coverage (Q13), and most preferred the structure-
revealing control-flow graph visualization over the more precise textual representation
of additional coverage (Q14). This preference for user-guided test amplification is also
supported by the overall more positive ratings in the detailed questions about the approach
(Q1-5), compared to the detailed questions about open test amplification (Q6-10).

From the explanations of our participants we learned that they do not universally prefer
user-guided test amplification over open test amplification, but that it depends on their
use case, the information that they need to judge the amplified tests and the amount of
control they want to have over the amplification process. The results of our technical
study showed that the effectiveness of guided test amplification compared to open test
amplification depends on the class structure in the code under test and the data types
used as parameters. Taken together, we see that there are trade-offs between the two
approaches that should be considered when choosing either to work with or to improve
in future research. In Section 5.4 we collect these trade-offs and discuss the implications of
them for practitioners and researchers.

5.3.7 Threats to Validity
There are several threats to the validity of our two studies and their results. When it comes
to internal validity, we mitigated the threats by switching the order of the two approaches
(threat: learning effect) and which class each approach was applied to (threat: dissimilar
classes) equally over the four randomly-assigned participant groups. The characteristics
of the two projects and their classes in our technical study could dictate the outcome of
our technical study. To mitigate this, we manually analyzed the classes and transparently
discuss the impact of the number of methods per class and the complexity of the used
data types on the effectiveness comparison of the test amplification approaches. To ensure
the confirmability of our user study results, we focus on presenting the closed question
ratings and support them with explanations staying as close as possible to the participants’
formulations.

Regarding construct validity, the results of both studies are influenced by our prototype
implementations. We used the same test amplification tool for both approaches, which is
based on DSpot and limited to Java, with the only differences in implementation described
in Section 5.2. Another threat is whether we are measuring the effect of the different
amplification approaches or the changed user interface (UI) from open to user-guided test
amplification. Just as in our original study on developer-centric test amplification [Chap-
ter 2], we believe that a tool for developers and its UI can fundamentally not be developed or
studied in isolation. Tomitigate this threat, we ask separate questions about the information
and the UI elements to our participants (Q1/2, Q4/5, Q6/10, Q13/14).

The external validity of the results from our technical study is threatened by the two
projects selected for the case study. We observed that the complexity of the used data types

5

106 5 Trade-offs Between Open and Guided Test Amplification

and the number of methods in a class influence the effectiveness of the test amplification.
Further studies on a larger variety of projects and classes are needed to demonstrate the
generalizability of our findings. Another threat to the external validity of our user study
is whether the participants experienced the whole variety of methods which to test with
amplification. To mitigate this, we selected example classes with a varied complexity of
methods and initial tests that cover some methods of the class fully, partially or not at all.
In the user study we have participants from a range of different software domains, but
no participant has more than ten years of development experience, making the results
potentially not generalizable to very senior developers.

5.4 Discussion and Implications for Practitioners
and Researchers

With designing user-guided test amplification, we set out to improve the effectiveness
of the process and the understandability of the produced tests. Our technical case study
indicates that user-guided test amplification is indeed more effective, and the user study
suggests that developers find its components more understandable than those of open
test amplification. However, we also saw that the effectiveness of each approach varies
per project and class, and that the developers might prefer different test amplification
approaches depending on their current goal with testing. In this section, we will discuss
a series of trade-offs that we identified based on our two studies and the design of both
amplification techniques. Table 5.4 gives an overview of these trade-offs, together with the
source from which we take the answer for either technique.

Table 5.4: Trade-offs between user-guided and open test amplification.

User-Guided Test Amplifica-
tion

Open Test Amplification

Fits use case Writing production code &
wanting tests for it [partici-
pant reflection on Q16]

Improving test suite and re-
solving technical debt [par-
ticipant reflection on Q16,
Chapter 2]

Understand coverage
contribution and test
execution

In targeted method in detail
[Q4, design user-guided test
amplification]

Across the whole proj-
ect [Chapter 3]

Expectation of receiving
tests

Might disappoint if targeted
branch cannot be covered
[Technical study]

Only proposes tests / addi-
tional coverage it can pro-
vide [design open test ampli-
fication Chapter 2]

Runtime efficiency More effective at providing
tests for method of interest
[Technical study]

Can provide larger coverage
variety of tests for whole
class [Chapter 2]

5.4 Discussion and Implications for Practitioners and Researchers

5

107

The two amplification approaches fit two complimentary use cases for software
developers. From the participants reflecting on which approach is more helpful to generate
tests (Q16), we learned that the user-guided version is better suited when they write tests
in conjunction with the production code, also called test-guided development [8, 179].
When their focus is to improve the test suite itself, e.g., to address technical test debt [180–
183], open test amplification would be the better choice. This is because it connects an
amplified test clearer to the original test from the test suite by pointing out the applied
input modifications.

Open test amplification also informs the developer about the coverage impact of
an amplified test across the whole project [Chapter 2]. With the high prevalence of
integration tests in JUnit test suites [43, 44], tests amplified from them can improve test
coverage in several locations throughout a software project [Chapter 3]. Because this
scattered coverage information can be confusing [Chapter 2] and partially irrelevant to
developers [Chapter 3], user-guided test amplification focuses only on the impact in the
targeted method. In return, it can use the available room to convey the stronger metric of
branch coverage in a simple and easy to understand visualization (Q14).

A previous study on the interaction of software developers with test amplification
showed the importance of managing the users’ expectations and making sure they
align with what the tool can provide [Chapter 2]. Open test amplification only proposes
tests for locations it can actually cover, so it can easily fulfill the user’s expectations
for receiving tests. In our proposal of user-guided test amplification the developers can
select any branch as a target, but as we saw in the technical study, more than half of
the branches in our study projects could not be covered. This might disappoint the user
and not meet their expectations. When the participants of our study encountered this,
they however were positive about the fact that the tool clearly reported that it could not
generate a test (participant reflection on Q12). To address the low success rate of guided test
amplification, we would need to initialize the objects and parameters correctly to hit the
targeted branch (manual inspection technical study). Advanced techniques like concolic
execution [184–186], or search-based optimization [187] could address this. However, these
can be expensive to compute.

When studying the effectiveness of test amplification in our technical study, we saw
that guided test amplification produces a higher ratio of tests that successfully cover the
targeted branch. This highly fits the use case of testing the developer’s current focal method.
In contrast, the more explorative search in the whole method space of a class under test
that open test amplification performs is more effective when the goal is to improve the
coverage across the whole class. Someone who uses guided test amplification for this
would need to invoke it over and over again for each method in the class.

5.4.1 Implications for Practitioners
Our evaluation of user-guided and open test amplification uncovered a set of trade-offs a
software developer or their manager should consider when choosing which approach to
apply. The main, reoccurring consideration is why someone wants to generate tests: (1)
to improve the test suite itself (choose open test amplification), or (2) to get support for
writing tests while working on a specific part of the production code (choose user-guided
test amplification). Beyond this, our study also shows anecdotal evidence that when a code

5

108 5 Trade-offs Between Open and Guided Test Amplification

base contains many complex classes with private constructors, test amplification with our
state-of-the-art tool will likely not be able to cover many branches.

5.4.2 Implications for Researchers
For researchers in the area of test amplification and generation, as well as developer-centric
support tools, the insights from our study point to several new research directions.

Improving the effectiveness of guided test amplification asks for more advanced tech-
niques to initialize objects to cover the targeted branch. Can we apply computationally
expensive techniques while still providing an interactive user experience?

Could we actively ask the developer to help us with the initialization of objects that
are hard to create? Here the question is whether they would know enough to provide a
valuable initialization and whether the automation would still be worth it to use for the
developer if they would have to contribute such substantial effort to the test generation.

Many decisions in the design of either test amplification approach are motivated by the
required for a response time that feels interactive to the user. Would it be feasible to pre-
generate tests in the background and then selectively present relevant ones to the developer
when they request tests? A complication here is that current developer-test generation
approaches like test amplification or search-based generation with EvoSuite [17], require
the code under test to be available. However, we observed repeatedly in our user study
that developers are looking for tests covering the code they just wrote a short while ago.

Why did the participants of our study prefer the control-flow graph visualization of
the branch coverage over the bytecode instruction visualization of the line coverage?
Based on our observations, we conjecture that the following aspect could influence this:
(1) using a coverage metric that is embedded in the developer’s mental structure of the
code, (2) limiting the scope of the displayed code coverage to just the one method the
developer is concerned about, and (3) presenting the existing coverage in conjunction with
the additionally provided coverage, letting the developer grasp the differential impact a
new amplified test makes.

5.5 Related Work
In this section, we discuss related work from the areas of directed and interactive test
generation.

5.5.1 Directed Test Generation
Search-Based Software Testing (SBST) uses search algorithms to automatically find tests that
a variety test objectives captured in a fitness function [188]. SBST has been used to automate
test generation for various test goals, such as maximizing structural coverage [10, 116, 189–
191] and crash reproduction [23, 187, 192].

Test suite augmentation techniques are used to generate tests that target code changes
that the existing test suite does not cover [121]. Xu et al. proposed several approaches for
test augmentation using concolic testing [122], genetic algorithms [193], and a combined,
hybrid approach [194, 195]. In their concolic approach, they find the source node of a
changed branch and select existing tests that reach this source node. Then they explore
different directions of path conditions to find new tests for the changed branch. Their

5.6 Conclusion and Future Work

5

109

genetic algorithm uses a fitness function that prefers the distance of a test’s execution
to the changed branch. In contrast to their approach, our test amplification focuses on
all uncovered branches of a software, not just the recently changed ones. Further, our
approach is simpler, as we only select a few initial tests and only amplify them with one
evolutionary iteration.

Several researchers focused on generating targeted tests to support debugging. Ma et al.
propose directed symbolic execution, using the distance to the target line as information to
guide the symbolic execution [196]. Dinges et al. [197] combine symbolic execution, to find
a suitable entry point to reach a target statement, with concolic execution and heuristics, to
try to satisfy constraints too difficult for the symbolic execution. Our approach makes use
of the existing tests as a basis for the amplification, and we do not use symbolic execution
to reduce our computational costs.

5.5.2 Interactive Test Generation
Several techniques are discussed to incorporate information provided by humans into the
test generation process. Marculescu et al. proposed Interactive Search-Based Software
Testing (ISBST) to involve domain specialists in test generation [77]. Their feedback adapts
the fitness function during the search process by changing the relative importance of
system quality attributes. The primary difference between their work and ours is that they
involve domain specialists in the test generation, while we target software developers. They
pointed out the importance of perfecting how automated test systems communicate with
users and ensuring that results are understandable to the users when transferring ISBST to
industry [78]. We address this in the design of our interface, visualizing information about
the test amplification results to help the user’s comprehension.

Murphy et al. propose to apply grammatical evolution into SBST and incorporate
human expertise into the search [198]. They proposed that users can define the search
space they want their tests to be created from by specifying a grammar. Ramírez et al.
observed two key issues hindering the acceptance of automated tests by analyzing various
studies that evaluated the effectiveness and acceptance of test generation tools [174]: the
opacity of the generation process and the lack of cooperation with the tester. To address
this, they incorporate the tester’s subjective assessment of readability to compare tests with
the same fitness in a search-based test generation process. Our work also addresses the
concerns Ramírez et al. raised. We cooperate with testers and make the process transparent
by letting testers express their branch coverage goal and guide the test generation. We
also improve the understandability of tests by connecting the amplified tests with testers’
coverage goals.

5.6 Conclusion and Future Work
The aim of user-guided test amplification was to ease the effort for software developers
when understanding amplified tests, by letting them point the test generation to a specific
target branch and then visualizing the resulting coverage leveraging a control flow graph
of the method under test. Through our technical case study, we show that even simple
modifications to the amplification process make guided test amplification more effective at
generating tests for a targeted branch. Our user study shows that developers prefer the

5

110 5 Trade-offs Between Open and Guided Test Amplification

interaction with user-guided test amplification, but that the choice for either technique is
dependent on the current use case of the developer. From our studies and the design of
both approaches, we identify and discuss four trade-offs that influence the choice between
open and user-guided test amplification: (1) the current task and goal of the developer,
(2) where the amplified test should provide coverage, (3) the ability to fulfill the user’s
expectation to receive a generated test, and (4) the available time for the test amplification.

Beyond the research implications we mentioned earlier, our work can be the basis for
several future research directions:

We observed the developer’s wishes to generate tests while they are working on a
particular piece of code. While user-guided test amplification is a step in this direction, the
next step would be to detect when a developer has finished a change, and automatically
generate and propose a test for the code change to the developer.

The feedback on the coverage visualization showed that it helps developer to under-
stand test coverage better. On the other hand, the expectations of the user guiding the
amplification now requires more advanced test generation approaches that are already
available in other tools. The next step, would be to disconnect the test generation tool from
the interaction layer that proposes the tests to developers. This allows for more flexibility
in choosing the test generation tool that is right for the job while still benefitting from the
continued advancement in test communication.

6

111

6
Mind the Gap:

What Working With
Developers on Fuzz Tests

Taught Us About
Coverage Gaps

Can fuzzers generate partial tests that developers find useful enough to complete into functional

tests (e.g., by adding assertions)? To address this question, we develop a prototype within the

Mozilla ecosystem and open 13 bug reports proposing partial generated tests for currently

uncovered code. We found that the majority of the reactions focus on whether the targeted

coverage gap is actually worth testing. To investigate further which coverage gaps developers

find relevant to close, we design an automated filter to exclude irrelevant coverage gaps before

generating tests. From conversations with 13 developers about whether the remaining coverage

gaps are worth closing when a partially generated test is available, we learn that the filtering

indeed removes clearly non-test-worthy gaps. The developers propose a variety of additional

strategies to address the coverage gaps and how to make fuzz tests and reports more useful for

developers.

This chapter is based on C. Brandt, M. Castelluccio, C. Holler, J. Kratzer, A. Zaidman and A. Bacchelli. Mind

the Gap: What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps, IEEE/ACM International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2024 [56].

6

112 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

W hile the importance of automated tests is widely accepted [58, 199], creating them
is a tedious task for developers [6–8]. Automatic test generation aims to alleviate

the developer’s effort when writing tests. State-of-the-art tools can reach high structural
coverage [10, 13, 47, 57], [Chapter 2], but face obstacles like understandability of the
tests [35, 159], [Chapters 3 and 4] and integration of the tools into the companies tooling [45,
200]. In contrast, automated testing tools from the security community, namely fuzzers, are
successfully applied in practice1 [201, 202]. Fuzzers explore possible inputs to a program to
find crashes and potential security vulnerabilities [5, 128]. At Mozilla, fuzzers find around
25 % of all critical or high rated security vulnerabilities, year after year (see Figure 6.1).
In this experience report, we document our exploration on whether fuzzers can generate
partial tests that developers find useful to complete into functional tests.

One of the sources of effort when writing tests is to create the fixture—the setup and
operations needed to reach the targeted code to be tested [203]. This is where fuzzers can
help: When they find a crash, they return the fixture and inputs triggering the crash. To
turn the fixture into a complete functional test, a developer would then add an assertion
that checks the behavior of the code under test. Let us illustrate this with an example:

To improve their test suite, Ezra’s software company introduced a tool that
proposes partial fuzzing-generated tests to developers. From the tool, Ezra
receives an issue report including a fuzzing-generated fixture that reaches a
line of code that is not yet covered by their test suite. She inspects the targeted
code and the provided fixture to judge whether the fixture is useful enough for
her to complete it into a functional test. To complete it, Ezra adds an assertion
that checks the behavior of the targeted code, surrounds it with their test
framework’s template, and then includes it in their test suite.

To explore the potential of such a tool, we conduct a study with two main phases. First,
we build a prototype based on Mozilla’s fuzzing infrastructure. Using this, we submit issue
reports with partial tests that draw from the output of fuzzers. We analyze the responses
to the reports to answer our first research question:

RQ1: What are developers’ reactions when proposing fuzzing-based tests to be com-
pleted into functional tests?

Our goal is to determine whether developers see enough value in these tests to develop
them into functional tests, such as by adding assertions. To enhance the significance of
these partial tests, we tailor them to target code sections not covered by current tests. Based
on developer feedback, we observe that they first assess the significance or “relevance” of
the specific code under test before evaluating the value of the partial tests themselves.

Drawing from these insights, in the study’s second phase, we design a filter to pinpoint
coverage gaps more relevant to the developers. We then engage with developers to gauge
their interest in addressing these gaps, addressing our second research question:

1https://hacks.mozilla.org/2021/02/browser-fuzzing-at-mozilla/

6.1 Fuzzing To Inspire Functional Tests

6

113

RQ2: What are developers’ opinions about closing the coverage gaps remaining after
our filter?

Our study reveals developers’ criteria for determining the significance of closing a
coverage gap and their preferred methods, including completing our partial fuzzing-based
tests.

334

291

221
185

160
127

101
69

44 54

0

50

100

150

200

250

300

350

400

2018 2019 2020 2021 2022

Critical and High-rated Security Vulnerabilities Resolved at Mozilla

total reported by fuzzing

Figure 6.1: Number of resolved critical and high-rated security vulnerabilities over the years at Mozilla. See
Section 6.8 for how we obtained these numbers.

6.1 Fuzzing To Inspire Functional Tests
In this section, we explain our approach to generate partial, fuzzing-based tests and to
create reports for developers to complete them to functional tests. We start by describing
our general design, and then explain how we concretely implement it for Mozilla.

6.1.1 Inspiration Through Fuzzing-based Tests
The test generation consists of five steps, which we illustrate in Figure 6.2.

First, we obtain the line coverage of the current regression test suite, e.g., from the
continuous integration artifacts 1⃝. We then instrument all code blocks which are not
executed by the test suite, i.e., they are not yet covered by the tests 2⃝. We instrument
these blocks with an assertion that will trigger the fuzzer: When a fuzz test executes one
of our inserted assertions, the fuzzer will register a crash and save the fuzz test. In the
third step 3⃝, we use a generative fuzzer to collect tests that execute the instrumented,
not-yet-tested code blocks. During the fuzzing, we also collect auxiliary information such
as which instrumented code block is executed and the stack trace when the fuzzer hit
the assertion. Next 4⃝, we minimize the fuzz tests to only those lines necessary to trigger
the instrumented assertion. When there are multiple minimal tests, we keep them all to
provide alternative tests to the developer.

After obtaining the minimal fuzz tests, we use them and the auxiliary information to
create a bug report for developers 5⃝. We explain that we have a partial test and link to
the untested code block it executes. We provide the test with the smallest character count,

6

114 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

and attach the stack trace to help the developer understand how the fuzz test executes the
code block. We also attach the other minimized tests as alternative inspirations for the
developer. The bug report asks the developer to complete the test by adding a functional
check, in xUnit terms: an assertion. If they think it is worth to do so, the developer should
add the test to the regression test suite. For this, they also need to write the boilerplate
code necessary to integrate the test into the test suite. Figure 6.4 shows an example test
from the Firefox source code, highlighting the functional assertions and the boilerplate
code that embeds the test into the test suite. The fuzzing-based tests don’t contain the
boilerplate code yet, because the fuzzer uses a different harness to execute the tests, and
there are multiple possible test suites with their own frameworks that the developer might
choose to add the test to.

* FunctionalTest

Functional
1 execute ↳

*

& &- -Test Suite
- Continuous

- Test uutested # Reducer
4

#

Integration Coverage blocks
Minimized g

SourceCode & FuzzTests Fuzz Tests
* ↳

- S I
Instrumentation ↑ 3 Auxiliam·

> 2
block not tested? *

&
Failure ↳ Report - Report

&C Instrumented? Fuzzer - * Information
-

-

Generator
↳ failing assertion Code

Figure 6.2: Overview of our fuzzing inspiration approach.

1 <script>
2 window.requestIdleCallback(window.close, {timeout: 10000})
3 </script>
4 <style>
5 html:last-of-type, #htmlvar00001 {
6 text-align-last: start; }
7 .class0, aside:nth-last-child(2) {
8 column-width: 1em;
9 </style>
10 <table>
11 <colgroup width="3" span="20">+GEE>uo/c(wt6,N:1=</colgroup><caption class="class0">

Figure 6.3: A partial fuzzing-based test produced in our study. To complete it, a functional assertion and test
framework boilerplate code needs to be added.

6.1.2 Instantiation in the Mozilla Ecosystem
We implemented our approach for the development environment of the Mozilla Firefox
browser. Several regression test suites are based on .html files that are executed in a
sandboxed browser environment [204]. Figure 6.4 shows an example test that checks that
the browser automatically scrolls to the right anchor on a page. The functional check
happens in the is(...) call, where two values are compared and if they are not the same,
the test fails with the provided error message. To generate partial tests matching these
browser tests, we use the Domato fuzzer.2 Domato is a state-of-the-art generative DOM
fuzzer, that uses grammars to generate random HTML, JavaScript, and CSS code in one
2https://github.com/googleprojectzero/domato

6.1 Fuzzing To Inspire Functional Tests

6

115

.html file [205, 206]. We use Mozilla’s grizzly3 harness to run Domato’s generated tests
in Firefox and record crashes and auxiliary information. We employ delta-debugging [207]
implemented in the tool lithium4 to reduce the fuzz tests to the minimum lines needed to
trigger the crash—to execute the instrumented, not-yet-tested code block. For the exact
configurations, please refer to our replication package.5 Figure 6.3 shows one example
of a reduced fuzz test generated during our case study. The reports we generate are for
Mozilla’s issue tracker Bugzilla and use their code search engine Searchfox to link to the
targeted code block. As an example, Figure 6.5 shows an one of the reports we generated
during our study.

https://searchfox.org/mozilla-central/source/layout/generic/test/test_bug1566783.html
<!doctype html>
<title>Test for scroll anchoring adjustments during onload</title>
<script src="/tests/SimpleTest/SimpleTest.js"></script>
<script>

SimpleTest.waitForExplicitFinish();
</script>
<link rel="stylesheet" href="/tests/SimpleTest/test.css"/>
<iframe width="300" height="300“ src="file_bug1566783.html#slow"></iframe>

https://searchfox.org/mozilla-central/source/layout/generic/test/file_bug1566783.html
<!doctype html> <style> .spacer { height: 200vh; } </style>
<script>

function loadFailed() {
parent.ok(false , "Image load should not fail");

}
</script>
<div class="spacer"></div>

<div class="spacer"></div>

<div class="spacer"></div>
<script>
onload = function () {

setTimeout(function() {
let rect = document.getElementById("slow").getBoundingClientRect();
parent.is(rect.height , 1000, "#slow should take space");
parent.is(rect.top, 0, "#slow should be at the top of the viewport");
parent.SimpleTest.finish();

}, 0);
} </script>

Test Framework
Boilerplate

Functional Assertions

Figure 6.4: A test from the Firefox regression test suite.

3https://github.com/MozillaSecurity/grizzly
4https://github.com/MozillaSecurity/lithium
5You can browse our replication package at: https://anonymous.4open.science/r/
moz-fuzz-inspiration-replication/readme.md or download it at https://zenodo.org/doi/10.5281/
zenodo.10470823.

https://anonymous.4open.science/r/moz-fuzz-inspiration-replication/readme.md
https://anonymous.4open.science/r/moz-fuzz-inspiration-replication/readme.md
https://zenodo.org/doi/10.5281/zenodo.10470823
https://zenodo.org/doi/10.5281/zenodo.10470823

6

116 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

Figure 6.5: A Bugzilla report submitted during our study.

6.2 Proposing Inspirational Fuzzing-Based Tests To Developers

6

117

6.2 Proposing Inspirational Fuzzing-Based Tests To
Developers

To investigate the feasibility of our approach for proposing partial, fuzzing-based tests for
completion to developers, we conduct a prototype study [208] at Mozilla. Our goal is to
explore whether our approach can provide tests that are helpful to software developers,
and what aspects require further attention to create tests and reports that the developers
find useful. In the study, we generate tests for uncovered code in the Firefox code base
and submit 13 Bugzilla reports proposing them to developers. We analyze the ensuing
discussions on the reports to identify why the developers choose to act on the report or
not, and how they resolve them. We conducted a risk analysis and sought approval from
our local ethics review boards with respect to data protection.

6.2.1 Study Design and Execution
For our study, we choose two folders in the Firefox code base to instrument and generate
tests for. The folder /dom contains the code pertaining to the implementation of the
Document Object Model6 (DOM) and its APIs. The folder /layout contains the layout
engine, responsible for laying out the elements of the page in the correct positions.7 In
initial trials, we saw that when inspecting the fuzzing-based tests generated for these
folders, we could draw clear connections between the objects and attributes in the test
generated by the DOM fuzzer and the code targeted by the tests. For this pragmatic reason,
we opted to focus on these two folders.

After instrumenting the code,8 we let our fuzzer run on a desktopmachine for 30minutes.
This yielded us 133 fuzz tests and corresponding reports. Of these, 36 were duplicates
targeting the same coverage gap. To not overwhelm the particular contributors or groups,
we decided to only open one Bugzilla report per Firefox component. Components are
categories of functionality that Mozilla uses to manage responsible reviewers and triagers
within Bugzilla. Each code file belongs to one component, and we identified the corre-
sponding component by looking at the file which contains the coverage gap targeted by a
generated test. We submitted 13 Bugzilla reports, one for each of the components present in
our set of generated tests. In Figure 6.5 you can see an example of such a report. We provide
the shortest test generated by the fuzzer for the targeted coverage gap and the stacktrace
showing how the test reaches the coverage gap. In addition, we included alternative tests
that the fuzzer produced for the same coverage gap, to provide more options in case the
shortest test was not useful.

Over the following week, we responded to any comments and questions by the develop-
ers. Because we categorized our reports as enhancements, many were initially not picked
up through the triage processes focusing on reports labeled as defects. After identifying
relevant developers based on the authors or reviewers of the patches that created the code
under test, we pinged them personally and then received reactions to four more of the
reports (1817159, 1817173, 1817235, 1817219).

6https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
7https://wiki.mozilla.org/Platform/Layout#About
8Revision: 63a3d733b2331033f48d10995ce09abf50def953 in mozilla-unified

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://wiki.mozilla.org/Platform/Layout#About

6

118 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

Bug ID Component Resolution
1816640 SVG Open
1816862 DOM: Serializers No Reaction
1817150 CSS Parsing and Computation No Reaction
1817154 DOM: Core & HTML No Reaction
1817158 Layout No Reaction
1817159 XSLT Open
1817215 MathML Open
1817221 Audio/Video No Reaction
1817238 Layout: Tables No Reaction
1817173 Web Painting Open
1817176 DOM: Networking Resolved
1817235 Layout: Block and Inline Resolved
1817219 Layout: Images, Video, and HTML Frames Resolved

Table 6.1: List of all Bugzilla reports we submitted, including the targeted component and the resolution state
of the report. The reports can be accessed via https://bugzilla.mozilla.org/show_bug.cgi?id=<id> and are
hyperlinked in the ID column.

6.2.2 Developer Reactions
In this section, we give an overview of the reactions to the reports we submitted. Table 6.1
lists each report, the component it is related to, and a link to the full discussion. Out of the
13 reports, six received no reaction, three were resolved, and four received comments but
remain open.

From the reports that received reactions, most prominently the developers focused on
whether the targeted code is worth testing. The developer reacting to report 1816640
stated that: “All [method under test] does is forward to setAttribute(’type’, value). I’m not
sure that there’s much value in testing it as it’s only one line of code.” Two developers
reacted to report 1817159. One pointed out that the code for this feature is “rather derelict”,
but then pointed to a recent zero-day bug related to this code, stating that “maybe it would
be good to invest a bit of time ensuring that we have good testing”. A second developer later
explained that, together with a colleague, they determined that the targeted code is suitable
to write tests. However, they also point out that these tests “wouldn’t teach or touch deeper
xslt logic”, which has the team’s priority at that moment. We interpreted “teach” in the vein
of tests serving as documentation on how to use the code under test [40, 58, 108]. Even
though tests for the targeted code would “improve exception catching in tests without
doubts”, they decide to leave this in their backlog. The developer reacting to report 1817219
explained that each of the tests are expected to trigger the early return in the targeted
coverage gap. They stated that it would not be worth to test that code, also because they
recently changed the surrounding behavior.

When the reports lead to action from the developers beyond comments, we observed a
variety of ways to address the reports. Report 1817176 received a quick reaction with
a patch submitted to code review. The patch did contain a test for the targeted coverage
gap, inspired by the test we submitted, but in a different format than our proposed one:
instead of a .html file, it was an addition to a .json file that configures parameterized tests.

https://bugzilla.mozilla.org/show_bug.cgi?id=1816640
https://bugzilla.mozilla.org/show_bug.cgi?id=1816862
https://bugzilla.mozilla.org/show_bug.cgi?id=1817150
https://bugzilla.mozilla.org/show_bug.cgi?id=1817154
https://bugzilla.mozilla.org/show_bug.cgi?id=1817158
https://bugzilla.mozilla.org/show_bug.cgi?id=1817159
https://bugzilla.mozilla.org/show_bug.cgi?id=1817215
https://bugzilla.mozilla.org/show_bug.cgi?id=1817221
https://bugzilla.mozilla.org/show_bug.cgi?id=1817238
https://bugzilla.mozilla.org/show_bug.cgi?id=1817173
https://bugzilla.mozilla.org/show_bug.cgi?id=1817176
https://bugzilla.mozilla.org/show_bug.cgi?id=1817235
https://bugzilla.mozilla.org/show_bug.cgi?id=1817219

6.3 Selecting Relevant Coverage Gaps

6

119

The first developer reacting to report 1817235 stated that it “looks potentially interesting,”
explaining the behavior triggered by the test. They propose to clean up the provided test
cases, making sure that the behavior of the code actually makes sense. A different developer
picked up the task and submitted a patch for the targeted line of code. However, when the
developer worked on the report, our tests did not trigger a printf statement they added in
the while loop they targeted to test. The developer speculated that this could have been
caused by changes to the code under test between the moment of fuzzing, opening the bug
report and addressing the bug report. So they crafted a test case themselves, inspired by
hints from our provided tests on which attributes are involved in triggering the code under
test. Report 1817219 was resolved by submitting and merging a patch that removed the
whole method targeted by our fuzz test. One developer linked our report 1817215 to another
active report about updating tests for this component after changes in the cross-browser
web-platform-tests.

We received a very detailed reaction to report 1817173, analyzing the behavior triggered
by the generated tests. The targeted coverage gap was a fallback path that is no longer used
because a newer component has taken over its responsibility on the operating systems
used for the CI coverage data. The developer pointed to the line of test code that the newer
component could not handle and which triggered the fallback path. They initially propose
two solutions to resolve the bug: (1) adding a test suite variant that runs all existing tests
while enforcing the fallback path, or (2) duplicating some related tests and modifying them
to use the fallback path. In the ensuing discussion, we uncovered that the former option
already exists, but this test suite covering the targeted code is not executed in the
current CI coverage calculation.

RQ1: Developers’ reactions when proposing fuzzing-based tests to be com-
pleted into functional tests

The developers reflected on whether the code targeted by the tests is worth covering,
mentioning a too small coverage gap or early returns as reasons to not act upon the
reports. Another reason was that the code was covered by tests not executed on the CI.
Other reports were addressed in a variety of ways: submitting a syntactically different
test for the same scenario, using our test as a starting point to write their own test, or
removing the targeted code as it was no longer used.

6.3 Selecting Relevant Coverage Gaps
In the developer’s reactions to our Bugzilla reports, we observed that several of the coverage
gaps we targeted with the fuzzing-based tests were considered less relevant to test by the
developers (Bug 1816640, Bug 1817159, Bug 1817219). This led to the developers not further
acting upon our generated tests. To provide more relevant reports and partial tests, we
decided to take a deeper look at which coverage gaps we should target with our tests.

For this, we designed an automatic filtering step that excludes less interesting coverage
gaps (between 1⃝ and 2⃝ in Figure 6.2) before instrumenting the code in preparation for the
fuzzer. The pseudo-code for the automatic filter is shown in Figure 6.6. The filter excludes
both:

6

120 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

• coverage gaps that are only a single line of code long, as the comments on the bug
reports deemed such gaps as too small to close (Bug 1816640), and

• coverage on conditions and branches that represent an early return out of a function
(Bug 1817159, Bug 1817219).

What we call an early return is when a function returns a default value after checking
for an error or warning. We detect such early returns by keywords, such as NS_ERROR
or Throw, combined with a return in the coverage gap. We manually inspected further
coverage gaps that were hit early, i.e., in two 2 minute runs, by our fuzzing approach, and
extended the keyword list to detect coverage gaps that were deemed as early returns by
our Mozilla collaborators. When running our filter over the coverage gaps in the folders
we instrumented before (/dom and /layout), we exclude 15054 (single line) and 8085 (early
return) coverage gaps, leading to a remainder of 8644 coverage gaps to instrument.

1 def should_we_instrument_this_line():
2 if (len(coverage_gap.lines) == 1)
3 or (len(coverage_gap.lines) == 2
4 and second_line_contains_only_closing_brace)
5 or is_early_return():
6 return False # don’t instrument
7
8 def is_early_return():
9 is_error_or_warning, is_return = False
10 if "NS_WARN_IF" in condition_before_coverage_gap:
11 is_error_or_warning = True
12 for line in coverage_gap.lines:
13 if ("NS_WARNING" in line
14 or "NS_ERROR" in line
15 or "Throw" in line
16 or "WEBM_DEBUG" in line
17 or "Error" in line
18 or ("promise" in line and "reject" in line))):
19 is_error_or_warning = True
20 if "return" in line:
21 is_return = True
22 return is_error_or_warning and is_return

Figure 6.6: Our filter for interesting coverage gaps.

6.4 DoDevelopersThinkTheseCoverageGaps Should
Be Tested?

To evaluate whether our filtering for coverage gaps indeed yields more interesting test
targets, we again reach out to the developers for feedback. We retrieve a new, more recent
revision and CI coverage run of the Firefox code base9 and apply our filter to select relevant
coverage gaps. To extend our reach of potential developers to talk to, we extended the
folders of the source code we implemented to include /accessible, /editor, and /gfx
in addition to /dom and /layout. Applying the filter left us with 19050 coverage gaps to
instrument, after excluding 30672 (single line) and 13626 (early return) coverage gaps. We
instrumented the remaining coverage gaps and again generate fuzz tests for 30minutes on
9Revision: 0bcf2642f5a6e7175812623451eda2ab6cb35a0d in mozilla-unified

6.4 Do Developers Think These Coverage Gaps Should Be Tested?

6

121

a desktop computer. This yielded us a set of 44 coverage gaps that pass our relevance filter
and could be hit by the fuzzer within the short time budget of 30minutes. We manually
validated if each coverage gap is still present and whether it should have been filtered: We
exclude five false positives (three early return statements, two single statement coverages
formatted to span two lines) and one coverage gap inside code that is only executed during
fuzzing runs.

We identified developers that can likely judge the test-worthiness of the coverage gaps
by looking at the authors and reviewers of the patch that introduced the targeted line of
code or recent patches the surrounding lines. Patches that did not show experience with
the code at hand, e.g., large scale refactorings, and contributors no longer with Mozilla,
were excluded by us. The second author, who is the manager of the CI and Quality Tools
team, which owns the coverage infrastructure and other development tools, contacted 13
developers. We briefly explained our project and that we are now trying to identify areas
of code that are interesting to cover with a test. We then gave them one or more code
locations and asked whether they can explain why or why not they are valuable to test.
Additionally, we sought their consent for using their comments in the paper publishing
this study.

Two authors analyzed the chat conversations by independently applying open and axial
coding. Then, they compared and merged the emerging themes from their independent
analyses. In the following, we will describe our observations along three major categories:
First, we take a look at the developers’ rationales for why a coverage gap is worth testing or
not, motivating the need for a more refined way of looking at code coverage and the need
to close coverage gaps. Then, we present varied proposals from the developers on how
to address the coverage gaps in other ways than completing the fuzz test to a functional
one. Finally, we consider our proposed approach of submitting bug reports with fuzz tests
to be completed to functional tests and discuss feedback from the developers on how to
modify the tests, report, and workflow to better fit their needs. Table 6.2 lists the coverage
gaps we discussed with each of the 13 developers, identified in the following by D1–D13.
For example, with D4 one of the four coverage gaps we discussed were lines 90–105 of
dom/svg/SVGMotionSMILAnimationFunction.cpp.

6.4.1 Test Relevance of the Filtered Coverage Gaps
Our deeper look at filtering for interesting coverage gaps was motivated by the feedback
on our initial Bugzilla reports pointing out coverage gaps too small to be worth closing
(1816640), and fallback options that return early from a method in case of an error (1817173).
Looking at the conversations, the filtering seems to be effective as we did not receive
answers along the lines of “this is too simple code to be worthy a test.” D1 reflects on a
very particular reason why the code is not tested at the moment. They explain that “our
tests only test the successful part”, which is a potential sign of confirmation bias [209].
Furthermore, D1 states that the specific failure handled by the targeted code is caused by
operating systems and hardware not available on the current CI servers.

In the conversations, the developers gave reasons why some coverage gaps should
be closed: to catch regressions (D11), increase the confidence during rewrites and larger-
scale refactorings (D3, D8), documenting edge case bugs (D3), testing important edge cases
(D10, Figure 6.7), or ensuring that the behavior matches an external specification (D2, D4).

6

122 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

D1 dom/media/platforms/PDMFactory.cpp#678-680
dom/media/platforms/PDMFactory.cpp#725-727

D2 dom/svg/SVGFEImageElement.cpp#191-196

D3 dom/events/ContentEventHandler.cpp#1752-1755

D4 dom/svg/SVGMotionSMILAnimationFunction.cpp#90-105
layout/painting/nsCSSRendering.cpp#4112-4113
dom/svg/DOMSVGLength.cpp#297-298
layout/base/PresShell.cpp#9665-9667

D5 layout/painting/nsCSSRendering.cpp#2418-2425
layout/generic/nsBlockFrame.cpp#1133-1142
dom/html/HTMLSharedElement.cpp#96-102
layout/style/GeckoBindings.cpp#1397-1401
dom/svg/SVGStyleElement.cpp#164-167
layout/base/PresShell.cpp#9665-9667

D6 layout/painting/nsCSSRendering.cpp#4112-4113
layout/svg/SVGTextFrame.cpp#3922-3926
gfx/thebes/gfxFont.cpp#1530-1533
layout/svg/SVGTextFrame.cpp#2881-2883

D7 editor/libeditor/EditorBase.cpp#2888-2890

D8 dom/svg/SVGFETileElement.cpp#51-55
layout/painting/nsCSSRenderingBorders.cpp#2845-2847
layout/painting/nsCSSRenderingBorders.cpp#2745-2748

D9 dom/xslt/xslt/txMozillaXSLTProcessor.cpp#881-890
dom/xslt/base/FtxDouble.cpp#52-53
dom/base/DirectionalityUtils.cpp#613-619
dom/base/DirectionalityUtils.cpp#1069-1070
dom/base/DirectionalityUtils.cpp#339-341

D10 layout/base/PresShell.cpp#9665-9667

D11 dom/base/DirectionalityUtils.cpp#613-619

D12 layout/tables/nsTableFrame.cpp#3018-3034

D13 dom/svg/DOMSVGLength.cpp#297-298
dom/svg/SVGElement.cpp#704-706
dom/svg/SVGPathData.cpp#476-481
dom/svg/DOMSVGAngle.cpp#105-107
dom/svg/DOMSVGAngle.cpp#28-30

Table 6.2: Overview of the developer chats and the discussed coverage gaps. The coverage gaps can be viewed
via: https://searchfox.org/mozilla-central/rev/8329a650e3b4
f866176ae54016702eb35fb8b0d6/<text in 2nd column> (also hyperlinked in that column). The given line
numbers are the first and last uncovered line of the coverage gap.

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/media/platforms/PDMFactory.cpp#678-680
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/media/platforms/PDMFactory.cpp#725-727
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGFEImageElement.cpp#191-196
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/events/ContentEventHandler.cpp#1752-1755
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGMotionSMILAnimationFunction.cpp#90-105
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGLength.cpp#297-298
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#2418-2425
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/generic/nsBlockFrame.cpp#1133-1142
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/html/HTMLSharedElement.cpp#96-102
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/style/GeckoBindings.cpp#1397-1401
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGStyleElement.cpp#164-167
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/svg/SVGTextFrame.cpp#3922-3926
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/gfx/thebes/gfxFont.cpp#1530-1533
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/svg/SVGTextFrame.cpp#2881-2883
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/editor/libeditor/EditorBase.cpp#2888-2890
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGFETileElement.cpp#51-55
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRenderingBorders.cpp#2845-2847
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRenderingBorders.cpp#2745-2748
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/xslt/xslt/txMozillaXSLTProcessor.cpp#881-890
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/xslt/base/FtxDouble.cpp#52-53
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#1069-1070
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#339-341
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/tables/nsTableFrame.cpp#3018-3034
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGLength.cpp#297-298
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGElement.cpp#704-706
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/SVGPathData.cpp#476-481
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGAngle.cpp#105-107
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/svg/DOMSVGAngle.cpp#28-30

6.4 Do Developers Think These Coverage Gaps Should Be Tested?

6

123

Figure 6.7: A coverage gap that that should be closed to test important edge cases according to D10. The gap is at
layout/base/PresShell.cpp#9665-9667.

D11 motivates that the code in Figure 6.8 should be tested because it uses raw pointers,
which are error-prone and may lead to null pointer or use-after-free errors.

On the other hand, the developers gave a variety of reasons for why the code in
the coverage gap is not worth the effort of testing. One reason is that they think
it is unlikely that there is a bug in the code, because the function did not change in
the last 10 years (D3), no bug reports have been opened in that area for a long time (D3,
D8), or it is legacy code that should not receive any changes in the future, as it serves as
a fallback to a newer implementation (D8). For the coverage gap discussed with D7, “it’s
hard to find how to run the path” because they are currently rewriting the component to
use the functionality less and less, and planning to eventually remove the code all together.
Other coverage gaps are described as unlikely to be reached because it is a do-nothing
fallback for an error in a third party library (D4, D6, talking about the coverage gap shown
in Figure 6.9), or the developers expect the case to rarely happen in practice (D4, D8).

Similar to Bugzilla report 1817173, we again encountered cases where, according to the
developer, the code should actually be covered by tests (D5 about three coverage gaps,
D8 about two coverage gaps). For D8, the separate job running the relevant tests is not
executed during the CI runs that calculate the coverage.

6.4.2 Different Ways to Address Coverage Gaps
Throughout the conversations, the developers we chatted with brought up ways to address
the coverage gaps that differ from completing the partial fuzz tests we could generate. An
overarching concern was whether it would be easier to manually write a test from
scratch (D4, D6). D13 points out that “it’s not hard for a developer that knows SVG to come
up with tests that hit those lines”. D8 directly starts describing a fitting test scenario for
one of the coverage gaps we asked about, and D6 explains “I think this would be simplest
to write manually, having identified the relevant code path”. D9 stresses that “depending

Figure 6.8: A coverage gap that that should be closed according to D11, because the code uses raw pointers. The
gap is at dom/base/DirectionalityUtils.cpp#613-619.

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/base/PresShell.cpp#9665-9667
https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/dom/base/DirectionalityUtils.cpp#613-619

6

124 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

Figure 6.9: A coverage gap that is a do-nothing fallback for a third party library and therefore unlikely to be
reached according to D4 and D6. The gap is at layout/painting/nsCSSRendering.cpp#4112-4113.

on how good/bad the generated [tests] are it might be easier to just have someone write
them in the first place.”

One of the coverage gaps discussed with D6 (see Figure 6.9) was described by them as
“would only be used in case of some kind of failure within [a third-party] library”, and in
that case likely another failure appeared earlier, making the code under test very unlikely to
be reached. To validate that this is indeed dead code, they propose to add an assertion that
triggers a crash in the regular fuzzing runs, and possibly later an “unreachable” assertion to
the production code base to alert the team in case the code does become reachable through
future changes. D4 recounted that for one of the coverage gaps the team considered adding
a crashtest, but that the value of this would be minimal as the code is already hit by the
regular fuzzing runs. These examples indicate that the developers consider the regular
fuzzing runs as an alternative to address missing coverage, increasing the confidence
that these code paths do not lead to crashes or that they are unreachable.

Based on our conversation with D5, three follow-up bug reports were filed. One,
the developer filed immediately, discussing an inconsistency between different browser
implementations that they discovered by looking at the coverage gap we pointed them to.
The report was resolved by adding a cross-browser test for the inconsistency and removing
the code causing the inconsistency, including the coverage gap. D5 also asked us to file
bugs to remove the code from two of the coverage gaps as the code had become obsolete
with a previous change. Together with the reaction to the Bugzilla report 1817219 in our
first study, we can see that pointing to coverage gaps can also nudge developers to delete
code that became obsolete.

6.4.3 Needs of Developers and How to Improve Our Approach
In our opening messages to the developers, we pointed to our project of generating tests
for the coverage gaps we asked about. Because of this, several of the developers also
reflected on the usefulness of such tests and the process of proposing them. D11 was open
to try out the generated tests, but stressed that the test should conform to the common
test frameworks in the project. They also proposed to directly add the test as a patch
to the code review platform where the developers can edit the test assertions. D3 stated
that it would be more useful to receive the test at the time of writing the patch that

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/layout/painting/nsCSSRendering.cpp#4112-4113

6.4 Do Developers Think These Coverage Gaps Should Be Tested?

6

125

introduces the targeted line of code, as compared to receiving the tests weeks later.

Several developers saw some value in providing a generated test alongside pointing to
the coverage gap. D6 explained that it is useful to know that a piece of uncovered code
could be covered, the generated test can prove that the code is reachable. They also
describe that the information about the coverage gaps can surface which “combinations
of features are going untested at present.” With D12 we discuss a coverage gap that they
described as a condition “not going through the normal . . . process.” We provided D12 with
our generated fuzz test and they opened an issue with it to “use the test case as a start
point to investigate if the [covered] branch makes sense or not.”10 The generated tests
can also be a starting point and inspiration for a developer familiar with the code to write
a complete correctness test case (D4). Three developers (D6, D11, D13) pointed out the
knowledge required to complete the tests and determine “what the correct behavior
. . . of the test case should be” (D6). This would require familiarity with the domain of the
code (D13) or reading specifications to ensure they are followed (D11).

Figure 6.10: The coverage gap we discussed with D7. The gap is at editor/libeditor/EditorBase.cpp#2888-2890.

The effort required by the developers to complete the tests was seen as problem-
atic by several of our conversation partners. D11 worries that tests that one needs to spend
time to complete will be ignored because “We’re already busy enough with intermittently
failing tests and what not.” For the coverage gap discussed with D7 (see Figure 6.10), they
state that it is fine to add a complete generated test, but “that it’s not worthwhile to use
the developers’ time [to write a test] for the edge case.”

10https://bugzilla.mozilla.org/show_bug.cgi?id=1832450

https://searchfox.org/mozilla-central/rev/8329a650e3b4f866176ae54016702eb35fb8b0d6/editor/libeditor/EditorBase.cpp#2888-2890

6

126 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

RQ2: Developers’ opinions about closing the coverage gaps remaining after
our filter

While our filter successfully excluded coverage gaps clearly not worth covering, several
remaining gaps were considered not worth the effort to cover because the developers
found it unlikely that there is a bug in the code, the code is unlikely to be reached, or
should already be covered by other tests.
Several developers pointed out that it might be easier to manually write a test from
scratch than to understand the generated test, and regular fuzzing runs covering code
was seen as an alternative to address missing test coverage.
The generated tests can serve as a proof that the targeted code is reachable by a test,
but the developers caution about the knowledge and effort required to complete the
partial test. To improve our approach, they propose to provide tests that already
conform to their common test framework and provide them at the time of submitting
the patch with the code under test.

6.5 Discussion
The feedback from the developers indicate that filtering out single-line and early return
coverage gaps helps to eliminate “clearly too simple to be worth testing” coverage gaps.
Nevertheless, we noted several more reasons that make a coverage gap less relevant for
testing. A crucial aspect is the effort required by the developers. Even for coverage gaps
described as relevant to test, developers stated that they do not have the time to write a
test or complete a generated one, compared to the other tasks they have to complete.

Our initial idea was to relieve parts of the developer’s efforts by generating partial tests
that reach coverage gaps in their code base. However, we learned to be careful about the
additional effort that we put on developer’s shoulders when they have to understand a
generated test before completing it. In the following, we discuss the implications of our
observations for software engineering practitioners, tool builders that want to support
them, and researchers in our field.

6.5.1 Implications for Practitioners
In practice, code coverage can be used as a metric by management to judge the quality of
testing performed in their teams [143, 210]. The observations in both our studies indicate
that not all “missing” coverage is equally worth testing. This points to the need for
a more refined metric that takes into account the test-worthiness and the required effort
to test a coverage gap when measuring the quality of testing. The repeated mention of
the effort to understand the generated test and the code under test, as well as the wish to
receive the test at the time of writing the code, points to the value of investing in testing at
an early stage in development, as the cost of adding the tests later is higher.

6.5.2 Implications for Tool Builders and Developer Support-
ers

A recurring concern in the second study was the effort to understand and complete the
generated tests. When trying to outsource difficult parts of automation tasks like generating

6.5 Discussion

6

127

assertions on to human users, we need to make sure that we provide value compared
to the user doing the whole task themselves, like writing complete tests from scratch.
We saw understanding the generated test is a hurdle to completing it with assertions.
With automated generation tools becoming much more popular (e.g., GitHub Copilot and
ChatGPT) the work of developers is moving from engineering solutions to evaluating and
adapting solutions generated by machines. We conjecture that the next steps need to be to
invest in supporting the developers in understanding generated code and tests. One way
would be to study and build dedicated tools for this task.

A different option would be to leverage the power of now popular large language
models to make the generated fuzz tests more human-readable, or to generate assertions
automatically by prompting the model with the generated test and the code under test. To
make the generated tests more useful for the developers, we should extend the filter we
presented in order to identify code that is worth testing. To reduce the cost of adding a test,
we could generate the tests earlier in the development process: at the time the developer is
writing the code or a reviewer is reviewing it, reducing the need of context switching.

6.5.3 Implications for Researchers
In both our studies we made initial observations that not all coverage gaps are equally
worth testing. This calls for a more detailed study on how to prioritize coverage gaps,
what factors influence the test-worthiness of a coverage gap and how to reliably measure
these factors. We conjecture that such factors would be very project / company / context
dependent. Already in this context we saw that security concerns (point to zero-day bug in
1817159) might weigh stronger than pure code quality improvements (1817159 improving
exception testing, but staying in backlog). In addition, we saw hesitancy to touch legacy
code that has been running without a link to bugs for long years, as maybe the less risky
option to not touch a running system.

Further, in both studies we saw a variety of ways the developers proposed to address
our reports or pointers to coverage gaps. Next to writing a test, they also removed code or
proposed to add assertions for the regular fuzzing runs to be notified in case the coverage
gap becomes reachable. This indicates that functional testing is not the only way to
“cover”/“secure” a line of code, and metrics we develop to measure the testedness of
code should include these other activities.

6.5.4 Threats to Validity
There are several threats to the validity of the observations in both our studies and the
conclusions we draw from them. A threat to the internal validity is the presence of a social
desirability bias, where the developer might have been inclined to answer overly positive
about adding tests. To mitigate the impact on our conclusions, we closely report on the
developer’s statements and the visible actions on the code that followed. While we did
receive rationales for why coverage gaps should be closed, we also report on the effort that
developers saw and that in many cases led to them not following up and addressing the
coverage gap.

Concerning confirmability, the threat that the results are shaped by the researcher
instead of the respondents, the analysis of the chat conversations with the developers was
independently performed by two authors, and we came to a consensus on the observations

6

128 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

and conclusions. These and the summary of the observations from the Bugzilla reports
were communicated to and confirmed by the other authors.

With respect to internal generalizability, we expect that our observations do generalize
to industrial open-source projects and companies with a similar size and positioning
towards testing. Looking at external generalizability, developers from projects with less
familiarity to fuzz testing likely would not point to fuzzing as a way to address the coverage
gaps. This and other findings should only carefully be generalized, and we encourage other
researchers to replicate our studies in other contexts.

6.6 Related Work
Previous work has studied the introduction of automated test generation tools in industrial
contexts. Brunetto et al. [200] report on their experience introducing a tailored automatic
GUI test generator in a medium-sized company. A difficulty they faced was the automatic
generation of functional oracles, which they mitigated by providing rich reports to support
engineers checking the effect of the test on the system. In their lessons learned, they
note that automation is welcome in industry, but only useful if the testers can understand
and interpret the produced tests. This matches the developer’s comments in our study
on the additional effort to understand the generated tests compared to writing the tests
from scratch. Brunetto et al. report that integrating the output of the test generation into
the workflow and tooling of the company was a key factor to enable the adoption of the
tool. Further, manually-specified functional oracles would increase the effectiveness of
generated test cases. However, a cost-effective way to define these automated oracles (for
system-level UI tests in their case) is still an open challenge. In a similar vein, Mesbah et
al. [211], who built a tool for automated test case generation for AJAX web applications,
note the effort and required knowledge for a developer to specify invariants that can
serve as oracles for the correctness of the software behavior. In a survey of 225 software
developers, Daka and Fraser [212] find that automated test generation in mainly used with
automated oracles, i.e., finding crashes or undeclared exceptions.

Almasi et al. [45] studied the industrial applicability of EvoSuite and Randoop in a
financial company. Through generating tests for 25 real faults from the history of the
companies’ software system and a survey under their developers, they found that in more
than half of the cases, more appropriate assertions would have led to the detection of the
faults with generated tests. The developers expected the automated generation tools to
integrate with their build pipeline and workflow, and were concerned about the readability
of the generated tests, input data and assertions. Xie et al. [213] report on their experiences
from industrial workshops on teaching testing tools, including the test generator Pex for
C# which generates partial tests that developers have to write assertions for. They learned
that the developers tended towards staying with the assertion-less automatically generated
tests rather than writing assertions for them. Further they pointed to the need to explicitly
teach them how they should interact with the generated tests and communicate why the
tests were generated with such values.

Zhang et al. [214] present an approach to fuzz test remote procedure call APIs and
evaluate it within an industrial context. They report challenges with isolating the test
environment (resetting the state of the application, data preparation and mocking of
external services) and propose to enable the fuzzer on the CI to promote its adoption

6.7 Conclusion and Future Work

6

129

in industry. They also point to the importance of non-flakiness and readability of the
generated tests as crucial to be considered when testing industrial APIs. Plöger et al. [125]
evaluated the usability of two fuzzers (AFL and libFuzzer) with computer science students.
They reported very low usability across all steps of the fuzzing process and gave a variety
of recommendations on how to improve, such as UI guidance through the fuzzing process,
better error messages, and crash analysis support.

6.7 Conclusion and Future Work
In this chapter, we set out to explore whether partial tests generated by fuzzers and
completed by developers can help alleviate the developer’s effort of creating tests. For this,
we developed a prototype within the Mozilla ecosystem. Through the discussions on 13
Bugzilla reports we created with our prototype, we observed that the code targeted by the
tests is a main concern for developers before considering the fuzz tests. More specifically,
the developers sometimes indicated that a coverage gap is not worth the effort to be tested.
We dove deeper into the test-worthiness of coverage gaps by designing a filter to exclude
small and early return coverage gaps. From discussing the remaining gaps with developers,
we learned that the filters are effective in excluding clearly irrelevant coverage gaps, but
there remain many considerations when deciding whether testing a coverage gap is worth
the effort. Remaining gaps were considered not worth the effort to cover because the
developers found it unlikely that there is a bug in the code, the code is unlikely to be
reached, or should already be covered by other tests. In addition, we saw that there are
other ways than functional tests that developers propose to address missing coverage.

Several opportunities for future work follow from our studies. Apart from the afore-
mentioned implications for researchers, the factors of relevance concerning coverage gaps
should be studied in other industrial or open source contexts, as we conjecture their priori-
ties to be different between projects and developers. Constructing more reliable coverage
calculations, that also include test suites not run on the regular CI runs and other quality
assurance or security testing techniques, would provide a more accurate picture of missing
coverage and therefore a more reliable basis to guide test generation efforts. Another
interesting extension would be to combine the fuzz tests with an automatic approach for
assertion generation and study whether confirming a generated assertion reduces the
developer’s understanding effort far enough to make the approach viable compared to
writing tests manually from scratch.

Acknowledgements This research was partially funded by the Dutch science foun-
dation NWO through the Vici “TestShift” grant (No. VI.C.182.032). A. Bacchelli ac-
knowledges the support of the Swiss National Science Foundation for the SNSF Project
200021_197227. Further support came from the Swiss National Science Foundation (SNSF
Grant 200021M_205146).

6

130 6 What Working With Developers on Fuzz Tests Taught Us About Coverage Gaps

6.8 Appendix: Fuzzing-Discovered Security Vulner-
abilities at Mozilla

The graph in Figure 6.1 is constructed by querying the Bugzilla database for all resolved
security vulnerabilities with a critical or high rating on 2023-07-22. For all bugs that were
opened in 2018, received a security rating critical or high, and were resolved, run this
query:

1 https://bugzilla.mozilla.org/buglist.cgi?
2 chfieldfrom=2018-01-01&
3 chfieldto=2018-12-31&
4 chfield=%5BBug%20creation%5D&
5 keywords=sec-high%2C%20sec-critical%2C%20&
6 classification=Client%20Software&classification=Developer%20Infrastructure&
7 classification=Components&classification=Server%20Software&classification=Other&
8 query_format=advanced&
9 keywords_type=anywords&
10 resolution=FIXED&resolution=WONTFIX&resolution=INACTIVE&resolution=DUPLICATE&resolution=WORKSFORME&
11 resolution=INCOMPLETE&resolution=SUPPORT&resolution=EXPIRED&

To only see bugs from this search that were reported by the fuzzing team, append to the
above query:

1 emailreporter1=1&
2 emailassigned_to1=1&
3 emailtype1=exact&
4 emailcc1=1&
5 email1=fuzzing%40mozilla.com&

To obtain the values for the following years, we changed the year numbers in chfieldfrom
and chfieldto. As this is querying the public Bugzilla database, bugs that are (still) hidden
from the public are not included in the results. Focusing on bugs that have been resolved
might bias the results towards fuzzing because fuzzing reports are reproducible, which can
make them quicker to fix than other bugs that are harder to diagnose or fix.

7

131

7
Conclusion

In this thesis, we set out to advance the state of automatic generation of software tests by
tapping into the expertise of software developers. To enable this, we worked on generating
amplified tests that are useful and helpful for developers. The overarching research question
guiding this thesis was:

How do we design an effective collaboration between software developers and
automatic test amplification tools?

We explored an initial design of a test exploration tool facilitating this collabora-
tion (Chapter 2), and investigated different facets of this interaction in depth, like commu-
nicating behavior and impact of a test (Chapter 3), what changes developers can expect
to make to amplified tests when incorporating them into their test suite (Chapter 4), how
guidance by the developer towards which code to cover impacts the test amplification
process and interaction (Chapter 5), and characterizing the coverage gaps that developers
find relevant to close (Chapter 6). In this chapter, we revisit our research questions defined
in Chapter 1 and outline our answers to them based on the studies we conducted. Then we
discuss the implications of our work for software developers, tool builders, and researchers.
Finally, we sketch opportunities for future work.

7.1 Revisiting Our ResearchQuestions
Let us revisit the five research questions guiding each of our separate studies and summarize
the insights we gained during this thesis.

Chapter 2

What factors are relevant to developers working with a developer-centric test amplifi-
cation tool?

In our first study, we explored an initial design of developer-centric test amplification
with the help of a dedicated test exploration tool that facilitates the communication between

7

132 7 Conclusion

the test amplification tool and the software developer. We implemented this design in
our plugin TestCube for the IntelliJ integrated development environment. With this
prototype, we let 16 developers try out our idea of developer-centric test amplification.
During our semi-structured interviews with these developers, we observed key factors to
make both the amplified tests and the test exploration tool suited for the developer-centric
interaction. We also collected which kinds of information the developers sought about
amplified tests and what value developer-centric test amplification brings to developers.
We learned that the central factor for the developers accepting a test is that they understand
a variety of aspects about the test, like its behavior or targeted code under test, and that
the tested scenario is relevant for the developers. The test exploration tool should be easy
to use and actively manage the developers’ expectations about which tests it can generate
and how long this will take. The tool should also manage which information is shown to
or reachable by the developer, in order to not overwhelm them and let them focus on their
current task during the interaction.

We give two recommendations arising from this study. The first recommendation is
to consciously design the interaction between the software developer and the automatic
test amplification tool. Our second recommendation is that in such a developer-centric use
case, the understandability and relevance of an amplified test should be prioritized over its
improvement of coverage metrics.

Chapter 3

How should a visualization of the execution behavior and coverage impact of an
amplified test be designed to help software developers judge the amplified test?

For our second study, we developed TestImpactGraph, a visualization that shows
the methods executed by a test and highlights the additional coverage provided by the
test compared to the existing test suite. In our think-aloud study, we learned that the
visualization is helpful to developers, and that they want access to a variety of information
about the test execution. Exploring the visualization, our participants asked about other
tests that cover the same code, which could help them judge the usefulness of the visualized
test. Our visualization made deep coverage contributions visible, where the additionally
covered lines are several method calls away from the test method. This could be an
unintended coverage contribution or point to a lack of more direct unit testing.

From our observations, we conjectured that using a visualization likeTestImpactGraph
can enable developers to gain more refined insights into the behavior and coverage of a
test in comparison to the rest of the test suite. These insights can also be beneficial when
reviewing tests contributed by other developers or when refactoring a test suite to be
smaller or more modular.

Chapter 4

What changes do developers make to amplified tests before incorporating them into
their maintained test suite?

In our third study, we investigated more broadly which edit and selection actions

7.1 Revisiting Our ResearchQuestions

7

133

developers should expect to make when working with amplified tests. To study the realistic
opinions of developers who are experts with the systems under test, we amplified tests for
popular open source Java projects. We submitted pull requests with tests that improve their
test suites, and analyzed the responses of the maintainers who reviewed our pull requests.
Being mindful to not antagonize the maintainers with low quality contributions, we had to
manually select and edit some of the amplified tests before opening the pull requests.

Based on the checklists we developed for our manual preparation and the changes
requested by the pull request reviewers, we formulate general guidelines for developers on
how to select and edit amplified tests before including them in a test suite. We observed that
these changes fall largely into two main categories. The first one concerns project-specific
changes. These could be automated by configuring the test amplification process to fit
the specific project, like automatic linter fixes or blacklisting methods that do not require
testing. The second category consists of changes that are hard to automate because they
highly benefit from the developer understanding the test. As the developers already aim to
understand the test before accepting it into their test suite, we conjecture that supporting
them in understanding the test and helping them make these changes confidently might
be more fruitful than further trying to automate these changes.

Chapter 5

How does developer guidance towards a coverage target impact the developer-centric
test amplification process?

In the fourth study presented in this thesis, we investigate the impact of explicit
guidance by the developer on the test amplification process and the comprehension of the
amplified tests. We extended our IntelliJ plugin developed in Chapter 2 with a control-flow
graph visualization that lets developers indicate which branch of a method they want to
cover with an amplified test. We then reuse the same visualization to communicate the
coverage of the resulting amplified tests to the developer. Our technical study shows that
even with simple changes to the test amplification process, the guidance leads to a more
focused test amplification that produces a larger proportion of fitting tests. Our user study
showed that the active guidance by the developer and the control-flow graph visualizations
makes the amplified tests easier to understand. However, the user guidance also creates
new requirements, like managing the expectations of which branches can be covered, or a
high speed of the test generation so that the response time feels interactive for the user.

Overall, we see that there are trade-offs between the directed and non-directed vari-
ations of test amplification. We recommend choosing the directed or non-directed test
amplification depending on the use case in which the developer wants to generate tests:
When they are looking for tests accompanying the code they are currently writing, directed
test amplification is more helpful, while non-directed test amplification is better suited for
dedicatedly improving a test suite as a whole.

7

134 7 Conclusion

Chapter 6

What are developer’s reactions when proposing fuzzing-based tests that would close
coverage gaps after being completed with a functional oracle?

For our fifth study, we collaborated with Mozilla and together explored how we can
leverage their established fuzzing tooling to generated tests for code that is not yet covered
by their test suite. With a fuzzer we generate a test input that executes a not-yet-tested
block of code from the Firefox browser and propose these partial tests to the developers.
Our idea was that the developers complete the partial tests into functional tests by adding
an explicit oracle to it, i.e., an assertion that checks that the targeted line of code behaves
correctly. From the developers’ reactions to our proposed tests we learn that the test-
worthiness of the targeted coverage gap is a central concern for developers. After designing
a filter to exclude the mentioned irrelevant coverage gaps, we discuss a set of remaining
coverage gaps that we can generate partial tests for with the developers.

We learn in more depth what aspects make a coverage gap (not) worth closing, such as
the component’s involvement in recent bugs or the effort to close that coverage gap by
writing or completing a test. The developers pointed out the effort of understanding the
generated test compared to writing a test from scratch for the coverage gap, which was
perceived as easier. They also asked to integrate the test proposals better in their test suite
and development workflow.

7.2 How to Design an Effective Collaboration Be-
tween Software Developers and Automatic Test
Amplification Tools

Through the five studies we conducted for this thesis, we gained an understanding on
how to build developer-centric test amplification tools (Chapters 2, 3 and 5), identified
which activities developers can expect to perform when working with developer-centric
test amplification (Chapters 2 and 4), and recognized that developer involvement comes
at a cost and opens new requirements (Chapters 5 and 6). To answer our overarching
research question and assemble the insights from our studies, we will now describe how
one should design an effective collaboration between software developers and automatic
test amplification tools based on our research.

Active and careful design of the communication between developer and automatic tool
is central, because developers want to know and understand a plethora of aspects from a
test case in order to judge whether they should include a test in their test suite (Chapters 2
to 6). Important here is that developers seek a variety of information depending on their
situation, their software project and the developer themselves (Chapters 2 to 4). They
could for example seek information about the intended behavior of the test, the contributed
coverage, the test’s runtime or whether it passes (Chapters 2 and 3). This information
should be accessible in findable locations and not be shown all at once (Chapters 2 and 3).
Giving direction in the process benefits comprehension, but increases expectations of the
developers towards covering targeted branches and interactive speed (Chapter 5). The
developer should be supported and encouraged to take action. For example, this action

7.3 Implications

7

135

could be to modify the test based on their insight about the project, the code under test
and the test suite. Developers might also extend the test suite or adapt the code under test
based on inspiration from the amplified test (Chapters 2, 4 and 6). The developer should be
informed about what they can expect when interacting with the test amplification tool,
what tests the tool can produce for them, and which actions and contributions are expected
from them in this process (Chapters 2 and 4 to 6).

One of the central aspects to consider is the effort-to-value ratio that the tool provides
to the developer. The effort requested from the developer must match their perceived value
from the resulting tests. This ratio can be adjusted on both sides. For example, one can
reduce the effort required from the developer by supporting them in understanding the test
(Chapters 2 to 3, 5 and 6), provide as complete as possible tests (Chapter 6), and integrate
the tools and processes into their existing workflow (Chapters 2, 5 and 6). On the other
side, one can increase the value that developers gain from the interaction, by creating more
useful tests for the developers, e.g., by targeting coverage gaps that they find relevant to
test (Chapters 2, 4 and 6) or by targeting code that they recently worked on (Chapters 5
and 6). This also concerns the developers’ perception and comprehension of the additional
value that an amplified test brings, by more effectively communicating the behavior and
impact in terms that are meaningful to the developers (Chapters 3 to 6), e.g., by explaining
which behavior of their software is tested additionally by an amplified test.

7.3 Implications
In this section, we discuss the implications of our work for software developers and the
larger society, for tool builders that aim to help software developers in their work and for
researchers studying software testing and the collaboration between software developers
and automatic test generation tools.

7.3.1 Implications for Software Developers and Society
Software developers who are interested in improving their test suites can use our openly
available test amplification and exploration tools to amplify tests in their own software
projects and with that improve their test suites. Our available tools are the IntelliJ Plugin
TestCube

1 and our developer-centric adaption of DSpot2. The developers also benefit
from our insights about which use cases test amplification is suited for, and what actions
and contributions are expected from them when they work with developer-centric test
amplification tools. This enables them to take an informed decision about whether
and when to apply developer-centric test amplification in their software projects or
day-to-day development work.

Our insights can potentially also help developers improve their communication with
other developers during code reviews that involve tests. Just as with automatic test amplifi-
cation, reviewers who judge a test that is proposed during a pull request need to understand,
judge and propose edits for tests that are supposed to improve a test suite. Therefore, the
contributors proposing such tests can leverage our insights to decide what information

1https://plugins.jetbrains.com/plugin/14678-test-cube
2https://github.com/TestShiftProject/dspot

https://plugins.jetbrains.com/plugin/14678-test-cube
https://github.com/TestShiftProject/dspot

7

136 7 Conclusion

about tests they should convey to the maintainers to convince them of the behavior and
provided value of their tests.

As our work on test amplification advances one of the technologies helping developers
create stronger test suites more easily, we contribute to an improvement of the quality
assurance of the software we build and maintain in the future. Better quality assurance
helps to avoid bugs and other problems so that our society can better rely on the high
quality software that developers create.

7.3.2 Implications for Tool Builders
For tool builders, who design and implement tools that help software developers in their
day-to-day work, our research provides guidance on a variety of aspects concerning
how to design effective collaborations between software developers and automatic test
amplification tools. Beyond that, we clearly saw that in a developer-centric workflow,
where tools rely on the developers adopting and using a tool, developer satisfaction is
more important than improving metrics about the quality of a test suite. This means,
e.g., that the developer being happy about the value that they receive from interacting and
working with a test amplification tool is more relevant to the success of the tool than how
much measurable improvement the amplified tests bring to the test suites.

In this consideration, the value perceived by the developer is leading. It is not
sufficient to only provide high quality and helpful generations to the developers, but we
also need to effectively communicate and convince them about the value that is provided
by the artifacts we produce. To achieve such a successful communication, we recommend
considering the developer interaction of tools separately from the pure generation func-
tionality. For test amplification or generation, tool builders can learn from the insights
described in this thesis, but more importantly, they should conduct their own qualitative
research to understand how developers interact with their tools. To design this interaction,
tool builders should consider the various roles that the developers take on, such as writers,
reviewers or future readers and users of the tests or code that the tools create. These roles
also point to the tasks and actions developers might perform during the interaction, such
as understanding, judging, editing or extending the output generated by tools.

We observed that involving developers in an active role during a collaboration with
automatic tools can help tackle otherwise hard to automate challenges. However, we
recommend tool builders to carefully balance the effort asked from the developer
and the value perceived by the developer. This can be done by reducing the effort,
e.g., through functionalities supporting developer comprehension, or by increasing the
perceived value, e.g., by adapting optimization targets to fit the developer better or investing
in more meaningful communication about the beneficial contributions of a tool’s output.

7.3.3 Implications for Researchers
A plethora of software engineering research, including the work on test generation and
amplification, focuses on further and further automating the tasks of software develop-
ers. Nevertheless, even if we succeed in automating some of these tasks, the developers
later still have to interact with the artifacts we produce, such as developers using failing
tests to localize a fault in the source code or developers evaluating amplified tests before
incorporating them into their test suite. As this requires the developers to understand our

7.4 Future Work

7

137

generated artifacts, we could already leverage this comprehension earlier by collaborating
together with the developers to tackle activities that are hard to fully automate. Therefore,
we recommend researchers to consider collaborating with and actively supporting
the developers instead of only focusing on automating their tasks.

In our studies we observed that the developers find it important to understand the
behavior and the value of an automatically amplified test before they include it in their test
suite. We conjecture that this importance of understanding the output of generative
tools also applies to the usage of generative artificial intelligence for software
engineering tasks. Our vision of a consciously designed and effective collaboration with
software developers, as well as our concrete insights about how to communicate about tests
that improve a given test suite, could be applied to improve the interaction of generative
artificial intelligence with software developers.

Throughout this thesis, and especially in the last study (Chapter 6), we observed that
developers find different parts of their software more or less relevant to test with the auto-
mated regression tests that we generate. This is in line with the common recommendation
to not aim for 100 % code coverage for a manually written test suite. However, we still lack a
formal and empirically validated understanding on what parts of a software system should
be tested with regression tests according to the judgement by the software developers.
Therefore, we call for the development of a developer-driven test adequacy metric that
can give more constructive feedback about whether a test suite is adequately testing the
software system, based on the trade-offs developers have to make between the effort and
value of automatic tests. Such a metric could help guide automatic test generation tools
towards coverage goals that are relevant for developers, but also help maintainers and
managers to have a clearer understanding whether the right 80 % of their code is covered
by tests.

7.4 Future Work
In this section, we sketch opportunities for future work that build upon the insights from
this thesis.

Study Developer-Centric Test Amplification in Different Contexts: The studies
in this thesis mainly investigate test amplification for Java and single interactions of
developers with amplification tools or amplified tests. Future research should investigate
how our findings transfer to other contexts. This could be other programming languages
and paradigms, such as dynamically typed languages [170, 171], or domain-specific tests,
e.g., for distributed systems or machine learning. A second context to investigate is the long-
term use of developer-centric test amplification in a software project by one or multiple
developers in a longitudinal study [215]. The option to use test amplification might impact
their decision making around developing tests, or the long-term experience using test
amplification might impact the developer’s interaction with and needs from the tool.

Learn From Developer Interactions With Developer-Centric Test Amplification
Tools and Amplified Tests: Throughout our studies, we observed that the interaction
with and requirements towards test amplification varied depending on the developer, their

7

138 7 Conclusion

use case and the project under test. Future generations of test amplification tools should
take this diversity into account and adapt their generated tests to fit the developer’s current
context. One approach for this is to track the interactions of a user with the tool and the
amplified tests, learning from their manual edits to and selections of the tests. Such implicit
feedback could be combined with explicit feedback to customize the test amplification
process and the interaction with the developer.

Decouple Test Generation From Developer Interaction: Several of the design de-
cisions we took in our work on developer-centric test amplification were based on the
requirement to make the test amplification fast enough, so that a developer can interact
with it in real-time. This motivated our choice for instruction coverage instead of muta-
tion score in our first design in Chapter 2. When incorporating the developer’s guidance
towards a certain branch in Chapter 5, we opted for the simple modification of calling the
targeted method during the mutations performed by the test amplification. Decoupling
the test generation process from the interaction moment would allow us to explore more
runtime-consuming test generation approaches while still providing an interactive experi-
ence to the developer. For example, we would generate a variety of tests in the background
and save them. Then, when the developer requests a test for a certain coverage target, we
pick out the most fitting tests and propose these to the developer in the test exploration
tool. This decoupling would also enable us to integrate the developer-centric interaction of
our proposed test exploration tool with other test generation approaches, like search-based
or LLM-based test generation.

Just-in-Time Test Generation: The current test generation approaches generally re-
quire the code under test to be already written. However, with today’s extensive education
about the importance of testing, developers strive to create tests directly when they write
new functionality [8]. The next step in developer-centric test generation would be to pro-
pose fitting tests directly while the developer is writing their code. We sketched this idea
called Just-in-time test generation in a talk at the SMILESENG summer school [216]. We
envision a tool that is integrated into the developer’s IDE and detects when the developer
finished writing a coherent change or new functionality. Then it automatically creates a
matching test case in the background and proposes it to the developer, referring to their just
finished change. This quick generation is feasible because in the spirit of test amplification
the new tests are closely based on the existing tests for the neighboring code, with small
changes to test the new functionality. There are many challenges to tackle in order to
realize such a just-in-time test generation tool. These include, for example, detecting the
completion of a test-worthy change, generating a test that matches the change in the very
limited time available, or designing effective messages to propose the test to the developer.

Developer-Driven Test Adequacy Metric: In Chapter 6, we observed that not all code
is equally worth testing. This matches with common recommendations to not aim for 100 %
code coverage with automatic regression test suites, because it might not be worth the
effort that is required to test every possible scenario. The filter we designed in Chapter 6
and our discussions with the developers are a starting point to formalize which code in
a software system should be tested with regression tests according to the judgement by

7.4 Future Work

7

139

the software developers. A more refined model would be helpful to select which tests to
keep after the test amplification, or to use as a more developer-centered fitness function
when automatically optimizing test suites. It can also help software engineers to gain a
more refined judgement of the test coverage of their current test suites, giving insights
into whether the right 80 % of their code is executed by tests. To create such a refined,
developer-driven model, we propose to combine empirical studies analyzing which lines of
code are covered in mature open source projects [133], with further qualitative interviews
and discussions with software developers.

Test AmplificationWith Large LanguageModels: Another approach to generate tests
is by leveraging machine learning, in particular large language models (LLMs) [19, 217, 218].
LLMs are powerful at producing natural, realistic and readable test data and code. Future
work should investigate how LLMs can be leveraged for test amplification, for example, by
including original tests from the existing test suite or guidance towards a coverage target in
the prompt. LLMs could also work together with algorithmic approaches by contributing
natural test data or improving the readability of tests in a post-processing step. Similar to
the work in this thesis, the interaction of the developer with an LLM-based test generation
tool should be investigated to uncover how usable the generated tests are [219].

Amplification for Non-Automated Tests: Our studies and a majority of automatic
generation tools focus on generating automatically executable tests. However, higher in
the testing pyramid there are also valuable types of tests that are more expensive to execute.
These tests rely on human action, e.g., manual tests or user tests [220]. Future work should
explore how the idea of test amplification and our insights on communicating tests transfer
to the generation of manual tests. Due to the size of the executed code, one can no longer
so closely rely on the code under test to guide the test amplification. In addition, executing
tests to validate that they pass or to measure their contribution to the test suite is not as
straightforward then.

Incorporate Knowledge From Other Artifacts in the Developer Workflow: In our
research, we choose to work towards addressing the relevance problem and the oracle
problem in automatic test generation by collaborating with the developer. Another option
is to extract the required knowledge from other artifacts in the software engineering
process. Just as integrating all information for a task at hand helps developers [221], test
amplification tools could leverage information from just-in-time requirements documents
like issues [222] to inform the tool which paths to test and which expected outputs to
compare to.

IntertwinementWith Software Testing Education: In our vision of developer-centric
test amplification, we take the developer’s judgement as the basis to decide what is a
good test. However, the experience, knowledge and awareness of software testing varies
from developer to developer [165, 223] possibly due to their varying formal and informal
education. At the same time, automatic generation tools like the ones we propose can take a
role as an educator by guiding the developer and giving examples of high-quality tests [224].
Future research should explore how the use of developer-centric test amplification tools

7

140 7 Conclusion

differs for software developers with different experience levels and its educational impact
on the developers.

HelpDevelopersWrite the First Test: Test amplification requires an original, manually-
written test to base the amplified tests on. Whilemature projects frequently have established
test suites that we can improve, this does not hold for new or smaller projects. These
can therefore hardly benefit from test amplification. From our own experience, writing
such a first test of a test suite can be quite difficult. This is also supported by Swillus and
Zaidman’s theory [117] that the growing complexity in still small software projects both
creates the need for tests but also impairs the creation of said test suite. This is why future
studies should seek methods to automatically generate initial tests and a test suite for
an existing project, or to support the developer in creating them. One approach could
be to carve out these tests from system tests or manual whole-system interactions [159].
Then, we can investigate how such generated initial tests used as original tests impact the
effectiveness of test amplification. Just as generative machine learning models perform
worse when trained with generated data [225], amplifying generated test might present
difficulties and require adaptations of the amplification process.

141

Bibliography

References
[1] James A Whittaker, Jason Arbon, and Jeff Carollo. How Google Tests Software.

Addison-Wesley, 2012.

[2] Maurício Aniche. Effective Software Testing: A Developer’s Guide. Simon and Schuster,
2022.

[3] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Pearson Education,
2007.

[4] Alexander Tarlinder. Developer Testing: Building Quality Into Software. Addison-
Wesley Professional, 2016.

[5] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler.
The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2023.

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers
test? In IEEE/ACM International Conference on Software Engineering (ICSE), pages
559–562. IEEE CS, 2015.

[7] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their IDEs. In Joint Meeting on Foundations

of Software Engineering (ESEC/FSE), pages 179–190. ACM, 2015.

[8] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. Developer testing in the IDE: patterns, beliefs, and
behavior. IEEE Trans. Software Eng., 45(3):261–284, 2019.

[9] André N. Meyer, Gail C. Murphy, Thomas Fritz, and Thomas Zimmermann. Devel-
opers’ diverging perceptions of productivity. In Rethinking Productivity in Software

Engineering, pages 137–146. Apress open / Springer, 2019.

[10] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic test suite generation for
object-oriented software. In ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE) and European Software Engineering Conference (ESEC), pages 416–
419. ACM, 2011.

[11] Gordon Fraser andAndrea Arcuri. EvoSuite: On the challenges of test case generation
in the real world. In IEEE International Conference on Software Testing, Verification

and Validation (ICST), pages 362–369. IEEE CS, 2013.

142 Bibliography

[12] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for .NET.
In International Conference on Tests and Proofs (TAP), volume 4966 of LNCS, pages
134–153. Springer, 2008.

[13] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
Automatic test improvement with DSpot: A study with ten mature open-source
projects. Empir. Softw. Eng., 24(4):2603–2635, 2019.

[14] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In IEEE/ACM International Conference on Software

Engineering (ICSE), pages 75–84. IEEE CS, 2007.

[15] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
CodaMosa: Escaping coverage plateaus in test generation with pre-trained large
language models. In IEEE/ACM International Conference on Software Engineering

(ICSE), pages 919–931. IEEE, 2023.

[16] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection
of the targets. IEEE Trans. Software Eng., 44(2):122–158, 2018.

[17] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Trans. Software

Eng., 39(2):276–291, 2013.

[18] Benjamin Danglot, Martin Monperrus, Walter Rudametkin, and Benoit Baudry. An
approach and benchmark to detect behavioral changes of commits in continuous
integration. Empir. Softw. Eng., 25(4):2379–2415, 2020.

[19] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. Unit test case generation with transformers and focal context. arXiv
preprint arXiv:2009.05617, 2020.

[20] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine, and Nuo Li.
Scaling up automated test generation: Automatically generating maintainable re-
gression unit tests for programs. In IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 23—32. IEEE CS, 2011.

[21] STAMP. Use cases validation report v3. https://github.com/STAMP-project/
docs-forum/blob/master/docs/, 2019.

[22] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, and
Annibale Panichella. Good things come in threes: Improving search-based crash
reproduction with helper objectives. In IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 211–223. IEEE, 2020.

[23] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and
Arie van Deursen. Botsing, a search-based crash reproduction framework for Java. In
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
1278–1282. IEEE, 2020.

https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://github.com/STAMP-project/docs-forum/blob/master/docs/

References 143

[24] Fitash Ul Haq, Donghwan Shin, Lionel C. Briand, Thomas Stifter, and Jun Wang.
Automatic test suite generation for key-points detection DNNs using many-objective
search (experience paper). In ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA), pages 91–102. ACM, 2021.

[25] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE Trans. Software Eng., 41(5):507–525,
2015.

[26] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, KeMao, Alexander Mols, Taijin
Tei, and Ilya Zorin. Deploying search-based software engineering with Sapienz at
Facebook. In International Symposium on Search-Based Software Engineering (SSBSE),
volume 11036 of LNCS, pages 3–45. Springer, 2018.

[27] Sergio Segura, Gordon Fraser, Ana Belén Sánchez, and Antonio Ruiz Cortés. A
survey on metamorphic testing. IEEE Trans. Software Eng., 42(9):805–824, 2016.

[28] Maurício Aniche, Christoph Treude, and Andy Zaidman. How developers engineer
test cases: An observational study. IEEE Trans. Software Eng., 48(12):4925–4946, 2022.

[29] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
Modeling readability to improve unit tests. In Joint Meeting on Foundations of

Software Engineering (ESEC/FSE), pages 107–118. ACM, 2015.

[30] Giovanni Grano, Simone Scalabrino, Harald C. Gall, and Rocco Oliveto. An empir-
ical investigation on the readability of manual and generated test cases. In IEEE

International Conference on Program Comprehension (ICPC), pages 348–351. ACM,
2018.

[31] Benwen Zhang, Emily Hill, and James Clause. Towards automatically generating
descriptive names for unit tests. In IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 625–636. ACM, 2016.

[32] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2? In ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), pages
57–67. ACM, 2017.

[33] Nienke Nijkamp, Carolin Brandt, and Andy Zaidman. Naming amplified tests based
on improved coverage. In IEEE International Working Conference on Source Code

Analysis and Manipulation (SCAM), pages 237–241. IEEE, 2021.

[34] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. DeepTC-Enhancer:
Improving the readability of automatically generated tests. In IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 287–298. IEEE, 2020.

[35] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Har-
ald C. Gall. The impact of test case summaries on bug fixing performance: An

144 Bibliography

empirical investigation. In IEEE/ACM International Conference on Software Engineer-

ing (ICSE), pages 547–558. ACM, 2016.

[36] Simon Bihel and Benoit Baudry. Adapting amplified unit tests for human compre-
hension. KTH Internship Report, 2018.

[37] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P Robillard.
Generating unit tests for documentation. IEEE Trans. Software Eng., 2021.

[38] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test code
quality and its relation to issue handling performance. IEEE Trans. Software Eng.,
40(11):1100–1125, 2014.

[39] Daniel Hoffman and Paul Strooper. API documentation with executable examples. J.
Syst. Softw., 66(2):143–156, 2003.

[40] Pavneet Singh Kochhar, Xin Xia, and David Lo. Practitioners’ views on good software
testing practices. In IEEE/ACM International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 61–70. IEEE/ACM, 2019.

[41] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier, 2009.

[42] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin Mon-
perrus, and Benoit Baudry. A snowballing literature study on test amplification. J.
Syst. Softw., 157, 2019.

[43] Joris Van Geet and Andy Zaidman. A lightweight approach to determining the
adequacy of tests as documentation. Proc. PCODA, 6:21–26, 2006.

[44] Fabian Trautsch, Steffen Herbold, and Jens Grabowski. Are unit and integration test
definitions still valid for modern java projects? An empirical study on open-source
projects. J. Syst. Softw., 159, 2020.

[45] Mohammad Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis
Benefelds. An industrial evaluation of unit test generation: Finding real faults in a
financial application. In IEEE/ACM International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 263–272. IEEE CS, 2017.

[46] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does
automated unit test generation really help software testers? A controlled empirical
study. ACM Trans. Softw. Eng. Methodol., 24(4):23:1–23:49, 2015.

[47] JoséMiguel Rojas, Gordon Fraser, and Andrea Arcuri. Automated unit test generation
during software development: A controlled experiment and think-aloud observations.
In International Symposium on Software Testing and Analysis (ISSTA), pages 338–349.
ACM, 2015.

[48] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluating
fuzz testing. In ACM SIGSAC Conference on Computer and Communications Security

(CCS), pages 2123–2138. ACM, 2018.

References 145

[49] Roel J Wieringa. Design science methodology for information systems and software

engineering. Springer, 2014.

[50] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS Q., 28(1):75–105, 2004.

[51] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich, Michael Felderer,
Robert Feldt, Antonio Filieri, Carlo Alberto Furia, Daniel Graziotin, Pinjia He, Rashina
Hoda, Natalia Juristo, Barbara A. Kitchenham, Romain Robbes, Daniel Méndez, Jef-
ferson Seide Molléri, Diomidis Spinellis, Miroslaw Staron, Klaas-Jan Stol, Damian A.
Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan, and Sira Vegas. ACM
SIGSOFT empirical standards. CoRR, abs/2010.03525, 2020.

[52] Carolin Brandt and Andy Zaidman. Developer-centric test amplification. Empir.

Softw. Eng., 27(4):96, 2022.

[53] Carolin Brandt and Andy Zaidman. How does this new developer test fit in? A
visualization to understand amplified test cases. InWorking Conference on Software

Visualization (VISSOFT), pages 17–28. IEEE, 2022.

[54] Carolin Brandt, Ali Khatami, Mairieli Wessel, and Andy Zaidman. Shaken, not
stirred. How developers like their amplified tests. IEEE Transactions on Software

Engineering, 50(5):1264–1280, 2024.

[55] Carolin Brandt, Danyao Wang, and Andy Zaidman. When to let the developer guide:
Trade-offs between open and guided test amplification. In IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 231–241. IEEE,
2023.

[56] Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman,
and Alberto Bacchelli. Mind the gap: What working with developers on fuzz tests
taught us about coverage gaps. In IEEE/ACM International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP). ACM, 2024.

[57] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci, Harald C.
Gall, and Alberto Bacchelli. On the effectiveness of manual and automatic unit
test generation: Ten years later. In International Conference on Mining Software

Repositories (MSR), pages 121–125. IEEE/ACM, 2019.

[58] Kent L. Beck. Test-Driven Development - By Example. Addison-Wesley, 2003.

[59] Davide Spadini, Maurício Finavaro Aniche, Margaret-Anne D. Storey, Magiel
Bruntink, and Alberto Bacchelli. When testing meets code review: Why and how de-
velopers review tests. In IEEE/ACM International Conference on Software Engineering

(ICSE), pages 677–687. ACM, 2018.

[60] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. Automatic test case generation: What if test code quality matters? In
International Symposium on Software Testing and Analysis (ISSTA), pages 130–141.
ACM, 2016.

146 Bibliography

[61] Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Harald C. Gall. Pizza versus
pinsa: On the perception and measurability of unit test code quality. In IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME), pages 336–347.
IEEE, 2020.

[62] Xinhong Liu and Reid Holmes. Exploring developer preferences for visualizing
external information within source code editors. In Working Conference on Software

Visualization (VISSOFT), pages 27–37. IEEE, 2020.

[63] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? An empirical
investigation in search-based software engineering. Empir. Softw. Eng., 18(3):594–623,
2013.

[64] Carolin Brandt and Andy Zaidman. Appendix to “Developer-centric test ampli-
fication: The interplay between automatic generation and human exploration”.
https://doi.org/10.5281/zenodo.5254870, 2021.

[65] Aaron Bangor, Philip T. Kortum, and James T. Miller. An empirical evaluation of the
System Usability Scale. Int. J. Hum. Comput. Interact., 24(6):574–594, 2008.

[66] Juliet M Corbin and Anselm L Strauss. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology, 13(1):3–21, 1990.

[67] Yan Zhang and Barbara M Wildemuth. Unstructured interviews. Applications of
social research methods to questions in information and library science, pages 222–231,
2009.

[68] Nigel Bevan. International standards for HCI and usability. Int. J. Hum. Comput.

Stud., 55(4):533–552, 2001.

[69] Marllos Paiva Prado and Auri Marcelo Rizzo Vincenzi. Towards cognitive support
for unit testing: A qualitative study with practitioners. J. Syst. Softw., 141:66–84,
2018.

[70] Infinitest. Infinitest - the continuous test runner for the JVM.
https://infinitest.github.io/, 2021.

[71] Wessel Oosterbroek, Carolin Brandt, and Andy Zaidman. Removing redundant
statements in amplified test cases. In IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 242–246. IEEE, 2021.

[72] Boyang Li, Christopher Vendome, Mario Linares Vásquez, Denys Poshyvanyk, and
Nicholas A. Kraft. Automatically documenting unit test cases. In IEEE International

Conference on Software Testing, Verification and Validation (ICST), pages 341–352.
IEEE CS, 2016.

[73] Abdullah Alsharif, Gregory M. Kapfhammer, and Phil McMinn. What factors make
SQL test cases understandable for testers? A human study of automated test data
generation techniques. In IEEE International Conference on Software Maintenance

and Evolution (ICSME), pages 437–448. IEEE, 2019.

https://doi.org/10.5281/zenodo.5254870

References 147

[74] Andrea Arcuri, José Campos, and Gordon Fraser. Unit test generation during software
development: EvoSuite plugins for Maven, IntelliJ and Jenkins. In IEEE International

Conference on Software Testing, Verification and Validation (ICST), pages 401–408.
IEEE CS, 2016.

[75] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build:
An explorative analysis of Travis CI with GitHub. In International Conference on

Mining Software Repositories (MSR), pages 356–367. IEEE CS, 2017.

[76] STAMP. STAMP project: Eclipse IDE. https://github.com/STAMP-project/
stamp-ide, 2019.

[77] Bogdan Marculescu, Robert Feldt, and Richard Torkar. A concept for an interactive
search-based software testing system. In International Symposium on Search-Based

Software Engineering (SSBSE), volume 7515 of LNCS, pages 273–278. Springer, 2012.

[78] Bogdan Marculescu, Robert Feldt, Richard Torkar, and Simon M. Poulding. Transfer-
ring interactive search-based software testing to industry. J. Syst. Softw., 142:156–170,
2018.

[79] K. Anders Ericsson and Herbert A. Simon. How to study thinking in everyday life:
Contrasting think-aloud protocols with descriptions and explanations of thinking.
Mind, Culture, and Activity, 5(3):178–186, 1998.

[80] Panagiotis K. Linos, Philippe Aubet, Laurent Dumas, Yan Helleboid, Patricia Lejeune,
and Philippe Tulula. Facilitating the comprehension of C-programs: An experimental
study. In IEEE Workshop on Program Comprehension (WPC), pages 55–63. IEEE, 1993.

[81] Holger M. Kienle and Hausi A. Müller. Requirements of software visualization
tools: A literature survey. In IEEE International Workshop on Visualizing Software for

Understanding and Analysis (VISSOFT), pages 2–9. IEEE CS, 2007.

[82] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java software developers
using the elipse IDE? IEEE Softw., 23(4):76–83, 2006.

[83] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An exploratory
study of how developers seek, relate, and collect relevant information during software
maintenance tasks. IEEE Trans. Software Eng., (12):971–987, 2006.

[84] Michael Desmond, Margaret-Anne D. Storey, and Chris Exton. Fluid source code
views. In International Conference on Program Comprehension (ICPC), pages 260–263.
IEEE CS, 2006.

[85] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan O.
Borchers. Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency. In Annual ACM Symposium on User Interface Software and Technology,
pages 217–224. ACM, 2011.

https://github.com/STAMP-project/stamp-ide
https://github.com/STAMP-project/stamp-ide

148 Bibliography

[86] Andrew Bragdon, Robert C. Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola
Jr. Code bubbles: A working set-based interface for code understanding and mainte-
nance. In International Conference on Human Factors in Computing Systems (CHI),
pages 2503–2512. ACM, 2010.

[87] Andrew Bragdon, Steven P. Reiss, Robert C. Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola
Jr. Code bubbles: Rethinking the user interface paradigm of integrated development
environments. In IEEE/ACM International Conference on Software Engineering (ICSE),
pages 455–464. ACM, 2010.

[88] J. Lawrance, Steven Clarke, Margaret Burnett, and Gregg Rothermel. How well do
professional developers test with code coverage visualizations? An empirical study.
In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 53–60. IEEE, 2005.

[89] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In IEEE Symposium on Visual Languages (VL), pages 336–343. IEEE,
1996.

[90] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design
elements to support the construction of a mental model during software exploration.
J. Syst. Softw., 44(3):171–185, 1999.

[91] Felice Salviulo and Giuseppe Scanniello. Dealing with identifiers and comments in
source code comprehension and maintenance: Results from an ethnographically-
informed study with students and professionals. In International Conference on

Evaluation and Assessment in Software Engineering (EASE), pages 48:1–48:10. ACM,
2014.

[92] Chak Shun Yu, Christoph Treude, and Maurício Finavaro Aniche. Comprehend-
ing test code: An empirical study. In IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 501–512. IEEE, 2019.

[93] Bart Van Rompaey and Serge Demeyer. Establishing traceability links between unit
test cases and units under test. In European Conference on Software Maintenance and

Reengineering (CSMR), pages 209–218. IEEE CS, 2009.

[94] Victor Hurdugaci and Andy Zaidman. Aiding software developers to maintain
developer tests. In European Conference on Software Maintenance and Reengineering

(CSMR), pages 11–20. IEEE CS, 2012.

[95] Dabo Sun and Kenny Wong. On evaluating the layout of UML class diagrams for
program comprehension. In International Workshop on Program Comprehension

(IWPC), pages 317–326. IEEE CS, 2005.

[96] Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. The aesthetics of graph
visualization. In International Symposium on Computational Aesthetics in Graphics,

Visualization, and Imaging, pages 57–64. Eurographics Association, 2007.

References 149

[97] Michael Hilton, Jonathan Bell, and Darko Marinov. A large-scale study of test
coverage evolution. In ACM/IEEE International Conference on Automated Software

Engineering (ASE), pages 53–63. ACM, 2018.

[98] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and
Arie van Deursen. Presentation abstract: Generating class integration tests using call
site information. In Belgium-Netherlands Software Evolution Workshop (BENEVOL),
2019.

[99] Mark Grechanik and Gurudev Devanla. Generating integration tests automatically
using frequent patterns of method execution sequences. In International Conference

on Software Engineering and Knowledge Engineering (SEKE), pages 209–280. KSI
Research Inc. and Knowledge Systems Institute Graduate School, 2019.

[100] Mauro Pezzè, Konstantin Rubinov, and Jochen Wuttke. Generating effective integra-
tion test cases from unit ones. In IEEE International Conference on Software Testing,

Verification and Validation (ICST), pages 11–20. IEEE CS, 2013.

[101] Markus Borg, Andreas Brytting, and Daniel Hansson. An analytical view of test
results using cityscapes. In Design and Verification Conference and Exhibition United

States (DVCON US), 2018.

[102] Gergõ Balogh, Tamás Gergely, Árpád Beszédes, and Tibor Gyimóthy. Using the city
metaphor for visualizing test-related metrics. In International Workshop on Validating

Software Tests (VST@SANER), pages 17–20. IEEE CS, 2016.

[103] Michael Perscheid, Damien Cassou, and Robert Hirschfeld. Test quality feedback
improving effectivity and efficiency of unit testing. In International Conference on

Creating, Connecting and Collaborating through Computing, pages 60–67. IEEE, 2012.

[104] Rudolfs Opmanis, Paulis Kikusts, and Martins Opmanis. Visualization of large-scale
application testing results. Baltic Journal of Modern Computing, 4(1):34, 2016.

[105] Manuel Breugelmans and Bart Van Rompaey. TestQ: Exploring structural and
maintenance characteristics of unit test suites. In InternationalWorkshop on Advanced

Software Development Tools and Techniques (WASDeTT). Citeseer, 2008.

[106] Vanessa Peña Araya. Test blueprint: An effective visual support for test coverage. In
IEEE/ACM International Conference on Software Engineering (ICSE), pages 1140–1142.
ACM, 2011.

[107] Ani Rahmani, Joe Lian Min, and Asri Maspupah. An evaluation of code coverage
adequacy in automatic testing using control flow graph visualization. In IEEE

Symposium on Computer Applications & Industrial Electronics (ISCAIE), pages 239–
244. IEEE, 2020.

[108] Bas Cornelissen, Arie van Deursen, Leon Moonen, and Andy Zaidman. Visualizing
testsuites to aid in software understanding. In European Conference on Software

Maintenance and Reengineering (CSMR), pages 213–222. IEEE, 2007.

150 Bibliography

[109] Arthur-Jozsef Molnar. Live visualization of GUI application code coverage with
GUITracer. CoRR, abs/1702.08013, 2017.

[110] Paul V. Gestwicki and Bharat Jayaraman. Interactive visualization of Java programs.
In IEEE CS International Symposium on Human-Centric Computing Languages and

Environments (HCC), pages 226–235. IEEE CS, 2002.

[111] Philipp Bouillon, Jens Krinke, Nils Meyer, and Friedrich Steimann. EzUnit: A
framework for associating failed unit tests with potential programming errors. In
International Conference on Agile Processes in Software Engineering and Extreme

Programming (XP), volume 4536 of LNCS, pages 101–104. Springer, 2007.

[112] Nadera Aljawabrah, Tamás Gergely, Sanjay Misra, and Luis Fernández Sanz. Au-
tomated recovery and visualization of test-to-code traceability (TCT) links: An
evaluation. IEEE Access, 9:40111–40123, 2021.

[113] Nadera Aljawabrah, Tamás Gergely, and Mohammad Kharabsheh. Understanding
test-to-code traceability links: The need for a better visualizing model. In Inter-

national Conference on Computational Science and Its Applications (ICCSA), volume
11622 of LNCS, pages 428–441. Springer, 2019.

[114] Andreina Cota Vidaure, Evelyn Cusi Lopez, Juan Pablo Sandoval Alcocer, and Alexan-
dre Bergel. TestEvoViz: Visual introspection for genetically-based test coverage
evolution. InWorking Conference on Software Visualization (VISSOFT), pages 1–11.
IEEE CS, 2020.

[115] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-Walawege.
A systematic review of the application and empirical investigation of search-based
test case generation. IEEE Trans. Software Eng., 36(6):742–762, 2010.

[116] Luciano Baresi and Matteo Miraz. TestFul: Automatic unit-test generation for Java
classes. In IEEE/ACM International Conference on Software Engineering (ICSE), pages
281–284. ACM, 2010.

[117] Mark Swillus and Andy Zaidman. Sentiment overflow in the testing stack: Analysing
software testing posts on stack overflow. J. Syst. Softw., 205:111804, 2023.

[118] Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for Java. Softw. Pract. Exp., 34(11):1025–1050, 2004.

[119] Chris Brown and Chris Parnin. Sorry to bother you: Designing bots for effective
recommendations. In International Workshop on Bots in Software Engineering (BotSE),
pages 54–58. IEEE/ACM, 2019.

[120] Ali Khatami and Andy Zaidman. State-of-the-practice in quality assurance in open
source software development—replication package, 2022.

[121] Roderick Bloem, Robert Koenighofer, Franz Röck, and Michael Tautschnig. Automat-
ing test-suite augmentation. In International Conference on Quality Software, pages
67–72. IEEE, 2014.

References 151

[122] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, and Myra B. Cohen.
Directed test suite augmentation: Techniques and tradeoffs. In ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE), pages 257–
266. ACM, 2010.

[123] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn. An empirical
comparison of EvoSuite and DSpot for improving developer-written test suites with
respect to mutation score. In International Symposium on Search-Based Software

Engineering (SSBSE), volume 13711 of LNCS, pages 19–34. Springer, 2022.

[124] Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. The human side of fuzzing: Challenges faced by developers during
fuzzing activities. ACM Trans. Softw. Eng. Methodol., 33(1):1–26, nov 2023.

[125] Stephan Plöger, Mischa Meier, and Matthew Smith. A usability evaluation of AFL and
libfuzzer with CS students. In Conference on Human Factors in Computing Systems

(CHI), pages 186:1–186:18. ACM, 2023.

[126] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon, Taesoo
Kim, WooChul Shim, and Yong Ho Hwang. Utopia: Automatic generation of fuzz
driver using unit tests. In IEEE Symposium on Security and Privacy (SP), pages
2676–2692. IEEE, 2023.

[127] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. Generating highly-
structured input data by combining search-based testing and grammar-based fuzzing.
In IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1224–1228. IEEE, 2020.

[128] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing: Challenges and
reflections. IEEE Softw., 38(3):79–86, 2021.

[129] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. An exploratory study on
exception handling bugs in Java programs. J. Syst. Softw., 106:82–101, 2015.

[130] Saurabh Sinha and Mary Jean Harrold. Criteria for testing exception-handling
constructs in Java programs. In International Conference on Software Maintenance

(ICSM), page 265. IEEE CS, 1999.

[131] Carolin Brandt. Replication package for “Shaken, not stirred. How developers like
their amplified tests”. https://doi.org/10.5281/zenodo.7034924, 2023.

[132] Ravie Lakshmanan. Minnesota university apologizes for contributing malicious code
to the linux project.

[133] Ali Khatami and Andy Zaidman. State-of-the-practice in quality assurance in Java-
based open source software development. Softw. Pract. Exp., 2024.

[134] D Randy Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kappel-
man. Revisiting methodological issues in transcript analysis: Negotiated coding and
reliability. The Internet and Higher Education, 9(1):1–8, 2006.

152 Bibliography

[135] Anselm L Strauss and J. M. Corbin. Basics of qualitative research: Techniques and
procedures for developing grounded theory. SAGE Publications, 1998.

[136] Barney G Glaser and Anselm L Strauss. Discovery of Grounded Theory: Strategies for

Qualitative Research. Routledge, 2017.

[137] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in github for
MSR studies. In IEEE/ACM International Conference on Mining Software Repositories

(MSR), pages 560–564. IEEE, 2021.

[138] Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie van Deursen.
Work practices and challenges in pull-based development: The integrator’s perspec-
tive. In IEEE/ACM International Conference on Software Engineering (ICSE), pages
358–368. IEEE CS, 2015.

[139] Mika V. Mäntylä and Casper Lassenius. What types of defects are really discovered
in code reviews? IEEE Trans. Software Eng., 35(3):430–448, 2009.

[140] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Jürgens. Modern code
reviews in open-source projects: Which problems do they fix? InWorking Conference

on Mining Software Repositories (MSR), pages 202–211. ACM, 2014.

[141] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of
modern code review. In IEEE/ACM International Conference on Software Engineering

(ICSE), pages 712–721. IEEE CS, 2013.

[142] Mechelle Gittens, Keri Romanufa, David Godwin, and Jason Racicot. All code
coverage is not created equal: A case study in prioritized code coverage. In Conference
of the Centre for Advanced Studies on Collaborative Research, pages 131–145, USA,
2006. IBM.

[143] Brian Marick, John Smith, and Mark Jones. How to misuse code coverage. In
International Conference on Testing Computer Software, pages 16–18, 1999.

[144] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactoring
test code. In International Conference on Extreme Programming and Flexible Processes

in Software Engineering (XP), pages 92–95, 2001.

[145] Sebastian Eder, Maximilian Junker, Elmar Jürgens, Benedikt Hauptmann, Rudolf Vaas,
and Karl-Heinz Prommer. How much does unused code matter for maintenance? In
International Conference on Software Engineering (ICSE), pages 1102–1111. IEEE CS,
2012.

[146] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J. Hellendoorn. Test smells 20 years later: Detectability, validity, and
reliability. Empir. Softw. Eng., 27(7):170, 2022.

[147] Jifeng Xuan and Martin Monperrus. Test case purification for improving fault
localization. In ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), pages 52–63. ACM, 2014.

References 153

[148] Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Matthew Jorde. Carving
and replaying differential unit test cases from system test cases. IEEE Trans. Software

Eng., 35(1):29–45, 2009.

[149] Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli, and
Lionel C. Briand. Log-based slicing for system-level test cases. In ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA), pages 517–528.
ACM, 2021.

[150] Yucheng Zhang and Ali Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Joint Meeting on Foundations of Software Engineering (ESEC/FSE),
pages 214–224. ACM, 2015.

[151] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan. Code
coverage and postrelease defects: A large-scale study on open source projects. IEEE
Trans. Reliab., 66(4):1213–1228, 2017.

[152] Geraldine Galindo-Gutierrez, Maximiliano Narea Carvajal, Alison Fernandez Blanco,
Nicolas Anquetil, and Juan Pablo Sandoval Alcocer. A manual categorization of new
quality issues on automatically-generated tests. In IEEE International Conference on

Software Maintenance and Evolution (ICSME), 2023.

[153] David Schuler and Andreas Zeller. Assessing oracle quality with checked coverage.
In IEEE International Conference on Software Testing, Verification and Validation (ICST),
pages 90–99. IEEE CS, 2011.

[154] Matt Staats, Michael W. Whalen, and Mats Per Erik Heimdahl. Programs, tests, and
oracles: The foundations of testing revisited. In International Conference on Software

Engineering (ICSE), pages 391–400. ACM, 2011.

[155] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is mutation an appropriate
tool for testing experiments? In International Conference on Software Engineering

(ICSE), pages 402–411. ACM, 2005.

[156] Wei Ma, Thomas Laurent, Milos Ojdanic, Thierry Titcheu Chekam, Anthony Ven-
tresque, and Mike Papadakis. Commit-aware mutation testing. In IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 394–405. IEEE,
2020.

[157] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele Lanza. On the
quality of identifiers in test code. In International Working Conference on Source Code

Analysis and Manipulation (SCAM), pages 204–215. IEEE, 2019.

[158] Dietmar Winkler, Pirmin Urbanke, and Rudolf Ramler. What do we know about
readability of test code? - A systematic mapping study. In IEEE International Confer-

ence on Software Analysis, Evolution and Reengineering (SANER), pages 1167–1174.
IEEE, 2022.

154 Bibliography

[159] Amirhossein Deljouyi and Andy Zaidman. Generating understandable unit tests
through end-to-end test scenario carving. In International Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 107–118. IEEE, 2023.

[160] Pedro Delgado-Pérez, Aurora Ramírez, Kevin J. Valle-Gómez, Inmaculada Medina-
Bulo, and José Raúl Romero. InterEvo-TR: Interactive evolutionary test generation
with readability assessment. IEEE Trans. Software Eng., 49(4):2580–2596, 2023.

[161] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent J. Hellendoorn. CAT-
LM training language models on aligned code and tests. In IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 409–420. IEEE, 2023.

[162] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. Modern code review: A case study at google. In IEEE/ACM International

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),
pages 181–190. ACM, 2018.

[163] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. How does
code style inconsistency affect pull request integration? An exploratory study on
117 GitHub projects. Empir. Softw. Eng., 24(6):3871–3903, 2019.

[164] Lucas Zamprogno, Braxton Hall, Reid Holmes, and Joanne M. Atlee. Dynamic
human-in-the-loop assertion generation. IEEE Trans. Software Eng., 49(4):2337–2351,
2023.

[165] Ali Khatami and Andy Zaidman. Quality assurance awareness in open source
software projects on GitHub. In IEEE International Working Conference on Source

Code Analysis and Manipulation (SCAM), pages 174–185. IEEE, 2023.

[166] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May, Geral-
dine J. Noa-Guevara, Liam James Russell, Griselda G. Cuevas Zambrano, Daniel
Izquierdo-Cortazar, Igor Steinmacher, Marco Aurélio Gerosa, and Anita Sarma. The
long road ahead: Ongoing challenges in contributing to large OSS organizations and
what to do. Proc. ACM Hum. Comput. Interact., 5(CSCW2):407:1–407:30, 2021.

[167] Zheying Zhang, Outi Sievi-Korte, Ulla-Talvikki Virta, Hannu-Matti Järvinen, and
Davide Taibi. An investigation on the availability of contribution information in
open-source projects. In Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pages 86–90. IEEE, 2021.

[168] Omar Elazhary, Margaret-Anne D. Storey, Neil A. Ernst, and Andy Zaidman. Do as I
do, not as I say: Do contribution guidelines match the github contribution process?
In IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 286–290. IEEE, 2019.

[169] Andrea Arcuri. An experience report on applying software testing academic results
in industry: We need usable automated test generation. Empir. Softw. Eng., 23(4):1959–
1981, 2018.

References 155

[170] Mehrdad Abdi, Henrique Rocha, Serge Demeyer, and Alexandre Bergel. Small-amp:
Test amplification in a dynamically typed language. Empir. Softw. Eng., 27(6):128,
2022.

[171] Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer. AmPyfier: Test amplification in
python. J. Softw. Evol. Process., 34(11), 2022.

[172] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. On the
interplay between software testing and evolution and its effect on program compre-
hension. In Software Evolution, pages 173–202. Springer, 2008.

[173] Aurora Ramírez, José Raúl Romero, and Christopher L. Simons. A systematic review
of interaction in search-based software engineering. IEEE Trans. Software Eng.,
45(8):760–781, 2019.

[174] Aurora Ramírez, Pedro Delgado-Pérez, Kevin J. Valle-Gómez, Inmaculada Medina-
Bulo, and José Raúl Romero. Interactivity in the generation of test cases with
evolutionary computation. In IEEE Congress on Evolutionary Computation (CEC),
pages 2395–2402. IEEE, 2021.

[175] Manabu Kamimura and Gail C. Murphy. Towards generating human-oriented sum-
maries of unit test cases. In IEEE International Conference on Program Comprehension

(ICPC), pages 215–218. IEEE CS, 2013.

[176] Daniel Gaston and James Clause. A method for finding missing unit tests. In
IEEE International Conference on Software Maintenance and Evolution (ICSME), pages
92–103. IEEE, 2020.

[177] Chris Parnin and Spencer Rugaber. Resumption strategies for interrupted program-
ming tasks. Softw. Qual. J., 19(1):5–34, Aug 2010.

[178] Anonymous. Online appendix for "When to let the developer guide: Trade-offs
between open and guided test amplification". https://doi.org/10.5281/zenodo.8074647,
June 2023.

[179] Adrian Santos, Sira Vegas, Oscar Dieste, Fernando Uyaguari, Ayse Tosun, Davide
Fucci, Burak Turhan, Giuseppe Scanniello, Simone Romano, Itir Karac, Marco
Kuhrmann, Vladimir Mandic, Robert Ramac, Dietmar Pfahl, Christian Engblom,
Jarno Kyykka, Kerli Rungi, Carolina Palomeque, Jaroslav Spisak, Markku Oivo, and
Natalia Juristo. A family of experiments on test-driven development. Empir. Softw.

Eng., 26(3):42, 2021.

[180] Everton da S. Maldonado and Emad Shihab. Detecting and quantifying different
types of self-admitted technical debt. In IEEE International Workshop on Managing

Technical Debt (MTD), pages 9–15. IEEE CS, 2015.

[181] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt: From metaphor
to theory and practice. IEEE Softw., 29(6):18–21, 2012.

156 Bibliography

[182] Zadia Codabux and Byron J. Williams. Managing technical debt: An industrial case
study. In International Workshop on Managing Technical Debt (MTD), pages 8–15.
IEEE CS, 2013.

[183] Ganesh Samarthyam, Mahesh Muralidharan, and Raghu Kalyan Anna. Understand-
ing test debt. Trends in Software Testing, pages 1–17, 2017.

[184] Koushik Sen. Concolic testing. In IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 571–572. ACM, 2007.

[185] Karthick Jayaraman, David Harvison, Vijay Ganesh, and Adam Kiezun. jFuzz: A
concolic whitebox fuzzer for Java. In NASA Formal Methods Symposium (NFM),
volume NASA/CP-2009-215407 of NASA Conference Proceedings, pages 121–125,
2009.

[186] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
Feedback-directed unit test generation for C/C++ using concolic execution. In
International Conference on Software Engineering (ICSE), pages 132–141. IEEE CS,
2013.

[187] Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. Basic block coverage for
search-based unit testing and crash reproduction. Empir. Softw. Eng., 27(7):192, 2022.

[188] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A. Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn. An
orchestrated survey of methodologies for automated software test case generation.
J. Syst. Softw., 86(8):1978–2001, 2013.

[189] Kiran Lakhotia, Mark Harman, and Hamilton Gross. AUSTIN: an open source tool
for search based software testing of C programs. Inf. Softw. Technol., 55(1):112–125,
2013.

[190] Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul Gopinath, He Zhang, and
Alex Groce. Using relative lines of code to guide automated test generation for
python. CoRR, abs/2103.07006, 2021.

[191] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems and
challenges for search-based software testing. In IEEE International Conference on

Software Testing, Verification and Validation (ICST), pages 1–12. IEEE CS, 2015.

[192] Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey, Andy
Zaidman, and Arie van Deursen. Single-objective versus multi-objectivized optimiza-
tion for evolutionary crash reproduction. In International Symposium on Search-Based

Software Engineering (SSBSE), volume 11036 of LNCS, pages 325–340. Springer, 2018.

[193] Zhihong Xu, Myra B. Cohen, and Gregg Rothermel. Factors affecting the use of ge-
netic algorithms in test suite augmentation. In Genetic and Evolutionary Computation

Conference (GECCO), pages 1365–1372. ACM, 2010.

References 157

[194] Zhihong Xu, Yunho Kim, Moonzoo Kim, and Gregg Rothermel. A hybrid directed
test suite augmentation technique. In IEEE International Symposium on Software

Reliability Engineering (ISSRE), pages 150–159. IEEE CS, 2011.

[195] Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B. Cohen, and Gregg Rothermel.
Directed test suite augmentation: An empirical investigation. Softw. Test. Verification
Reliab., 25(2):77–114, 2015.

[196] Kin-Keung Ma, Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Directed
symbolic execution. In International Symposium on Static Analysis (SAS), volume
6887 of LNCS, pages 95–111. Springer, 2011.

[197] Peter Dinges and Gul A. Agha. Targeted test input generation using symbolic-
concrete backward execution. In ACM/IEEE International Conference on Automated

Software Engineering (ASE), pages 31–36. ACM, 2014.

[198] Aidan Murphy, Thomas Laurent, and Anthony Ventresque. The case for grammatical
evolution in test generation. In Genetic and Evolutionary Computation Conference

(GECCO), pages 1946–1947. ACM, 2022.

[199] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Workshop on the Future of Software Engineering (FOSE), pages 85–103. IEEE CS, 2007.

[200] Matteo Brunetto, Giovanni Denaro, Leonardo Mariani, and Mauro Pezzè. On in-
troducing automatic test case generation in practice: A success story and lessons
learned. J. Syst. Softw., 176:110933, 2021.

[201] Domagoj Babic. Sundew: Systematic automated security testing (keynote). In ACM

SIGSOFT International SPIN Symposium on Model Checking of Software, page 10. ACM,
2017.

[202] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox fuzzing
for security testing. Commun. ACM, 55(3):40–44, 2012.

[203] Magiel Bruntink and Arie van Deursen. Predicting class testability using object-
oriented metrics. In IEEE International Workshop on Source Code Analysis and Manip-

ulation (SCAM), pages 136–145. IEEE CS, 2004.

[204] Mozilla Documentation. Mochitest.

[205] Wen Xu, Soyeon Park, and Taesoo Kim. FREEDOM: engineering a state-of-the-art
DOM fuzzer. In ACM SIGSAC Conference on Computer and Communications Security

(CCS), pages 971–986. ACM, 2020.

[206] Google Project Zero. The great dom fuzz-off of 2017.

[207] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Trans. Software Eng., 28(2):183–200, 2002.

158 Bibliography

[208] Bruce Hanington and Bella Martin. Universal methods of design: 100 ways to
research complex problems, develop innovative ideas, and design effective solutions.
page 208, 2012.

[209] Gul Calikli and Ayse Bener. Empirical analysis of factors affecting confirmation bias
levels of software engineers. Softw. Qual. J., 23(4):695–722, 2015.

[210] Christian R. Prause, Jürgen Werner, Kay Hornig, Sascha Bosecker, and Marco
Kuhrmann. Is 100% test coverage a reasonable requirement? lessons learned from
a space software project. In International Conference on Product-Focused Software

Process Improvement (PROFES), volume 10611 of LNCS, pages 351–367. Springer, 2017.

[211] Ali Mesbah, Arie van Deursen, and Danny Roest. Invariant-based automatic testing
of modern web applications. IEEE Trans. Software Eng., 38(1):35–53, 2012.

[212] Ermira Daka and Gordon Fraser. A survey on unit testing practices and problems.
In IEEE International Symposium on Software Reliability Engineering (ISSRE), pages
201–211. IEEE CS, 2014.

[213] Tao Xie, Jonathan de Halleux, Nikolai Tillmann, and Wolfram Schulte. Teaching and
training developer-testing techniques and tool support. In ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)

Companion, pages 175–182. ACM, 2010.

[214] Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. White-
box fuzzing RPC-based APIs with EvoMaster: An industrial case study. CoRR,
abs/2208.12743, 2022.

[215] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study research in

software engineering: Guidelines and examples. John Wiley & Sons, 2012.

[216] Carolin Brandt. Incremental just-in-time test generation in lock-step with code
development. In International Summer School on Search- and Machine Learning-Based

Software Engineering (SMILESENG), page 35, 2022.

[217] Arghavan Moradi Dakhel, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and
Michel C. Desmarais. Effective test generation using pre-trained large language
models and mutation testing. CoRR, abs/2308.16557, 2023.

[218] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of
using large language models for automated unit test generation. IEEE Trans. Software
Eng., 50(1):85–105, 2024.

[219] Khalid El Haji, Carolin Brandt, and Andy Zaidman. Using github copilot for test
generation in python: An empirical study. In International Conference on Automation

of Software Test (AST), 2024.

[220] Roman Haas, Daniel Elsner, Elmar Jürgens, Alexander Pretschner, and Sven Apel.
How can manual testing processes be optimized? Developer survey, optimization
guidelines, and case studies. In ACM Joint European Software Engineering Conference

Glossary 159

and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 1281–
1291. ACM, 2021.

[221] Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), pages 1–11. ACM, 2006.

[222] Neil A. Ernst and Gail C. Murphy. Case studies in just-in-time requirements analysis.
In IEEE International Workshop on Empirical Requirements Engineering (EmpiRE),
pages 25–32. IEEE CS, 2012.

[223] Baris Ardiç and Andy Zaidman. Hey teachers, teach those kids some software testing.
In IEEE/ACM International Workshop on Software Engineering Education for the Next

Generation (SEENG@ICSE), pages 9–16. IEEE, 2023.

[224] Cristian-Alexandru Botocan, Piyush Deshmukh, Pavlos Makridis, Jorge Romeu
Huidobro, Mathanrajan Sundarrajan, Maurício Aniche, and Andy Zaidman.
TestKnight: An interactive assistant to stimulate test engineering. In IEEE/ACM

International Conference on Software Engineering (ICSE) Companion, pages 222–226.
ACM/IEEE, 2022.

[225] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and
Ross J. Anderson. The curse of recursion: Training on generated data makes models
forget. CoRR, abs/2305.17493, 2023.

[226] Carolin Brandt and Andy Zaidman. Strategies and challenges in recruiting interview
participants for a qualitative evaluation. In International Workshop on Recruiting

Participants for Empirical Software Engineering (RoPES), 2022.

[227] Casper Boone, Carolin E. Brandt, and Andy Zaidman. Fixing continuous integration
tests from within the IDE with contextual information. In IEEE/ACM International

Conference on Program Comprehension (ICPC), pages 287–297. ACM, 2022.

[228] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller.
LogChunks: A data set for build log analysis. In International Conference on Mining

Software Repositories (MSR), pages 583–587. ACM, 2020.

[229] Monika Pichlmair, Carolin Brandt, Marcel Henrich, Alexander Biederer, Ilhan Aslan,
Björn Bittner, and Elisabeth André. Pen-pen: A wellbeing design to help commuters
rest and relax. In Workshop on Human-Habitat for Health (H3): Human-Habitat

Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things

Era, pages 1–9, 2018.

161

Curriculum Vitæ

Carolin Elisabeth Brandt

Date of birth in Munich, Germany 20.08.1996

Education
PhD Student 2020 - 2024

Delft University of Technology, Software Engineering Research
Group
Visiting PhD Student August - November 2023

Hamburg University, Applied Software Technology Group

Master
How to Analyze Build Logs — A Comparative Study of Chunk
Retrieval Techniques

2019

Paper-Based Master Thesis, Guest at the Software Engineering
Research Group, Delft University of Technology
Elite Graduate Program Software Engineering 2017 - 2019

University of Augsburg, Technical University of Munich,
Ludwigs-Maximilans-University Munich

Avg. grade: 1.09, ‘very good’

Bachelor
A Description Language for Structural Smells 2017

Bachelor Thesis in Computer Science
Scholarship “Deutschlandstipendium” 2016-2018

Combined public and industrial scholarship for excellent students
Admission to best.in.tum 2015

Group of the best 2% of students at the faculty of computer science
Bachelor Computer Science: Games Engineering 2014 – 2017

Technical University of Munich Avg. grade: 1.3, ‘very good’

Secondary School
General Qualification for University Entrance 2006 – 2014

Werner-Heisenberg-Gymnasium Garching Avg. grade: 1.3, ‘very good’

162 Curriculum Vitæ

Prizes
2023 Distinguished Reviewer Award, International Conference on Mining Software

Repositories
2022 Best “New Ideas and Work in Progress” Paper / Presentation, SMILESENG

Summer School
2022 Award for Best Artifact, IEEE Working Conference on Software Visualization
2022 Second Place at the Poster Competition, Alice & Eve 2022
2021 International Women in Technology Scholarship, Personal Scholarship by

Zonta
2017 First Place at the HackaTUM Hackathon, Category “Bike-Rental Systems

Analysis”
2014 Best Graduate in Chemistry at Werner Heisenberg Gymnasium Garching,

German Chemical Society
2014 Third Place at the Individual Competition of the “Day of Mathematics”,

University of Ulm

Academic Service
2024 VST, Program Committee
2023+24 MSR, Junior Program Committee (2023), Program Committee (2024)
2023+24 MSR: Data and Tool Showcase, Program Committee
2023 ACM Transactions on Software Engineering and Methodology, Journal

Reviewer
2022 FUZZING, Artifact Evaluation Committee
2022+23 IEEE Transactions on Software Engineering, Journal Reviewer
2022 Journal of Systems and Software, Journal Reviewer
2022 BENEVOL, TestVis, Program Committee
2022 ECOOP, Publicity Chair
2022 Alice & Eve, Web Chair
2021 Journal of Software: Evolution and Process, Journal Reviewer
2021 VISSOFT, Program Committee, Publicity Chair
2021 ISSTA, Artifact Evaluation Committee
2021 ICSE, Organization Committee, Watch Parties and Gather.Town
2020 ICSE, Student Volunteer, Streaming in the Europe Timeband
2020 ESEC/FSE, ASE, Student Volunteer

163

List of Publications

 11. Carolin Brandt, Ali Khatami, Mairieli Wessel, and Andy Zaidman. Shaken, not stirred. How
developers like their amplified tests. IEEE Transactions on Software Engineering, 50(5):1264–
1280, 2024.

 10. Carolin Brandt, Marco Castelluccio, Christian Holler, Jason Kratzer, Andy Zaidman, and
Alberto Bacchelli. Mind the gap: What working with developers on fuzz tests taught us
about coverage gaps. In IEEE/ACM International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP). ACM, 2024.

9. Khalid El Haji, Carolin Brandt, and Andy Zaidman. Using github copilot for test generation in
python: An empirical study. In International Conference on Automation of Software Test (AST),
2024.

 8. Carolin Brandt, Danyao Wang, and Andy Zaidman. When to let the developer guide: Trade-
offs between open and guided test amplification. In IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM), pages 231–241. IEEE, 2023.

3 7. Carolin Brandt and Andy Zaidman. How does this new developer test fit in? A visualization
to understand amplified test cases. InWorking Conference on Software Visualization (VISSOFT),
pages 17–28. IEEE, 2022.

 6. Carolin Brandt and Andy Zaidman. Developer-centric test amplification. Empir. Softw. Eng.,
27(4):96, 2022.

5. Carolin Brandt and Andy Zaidman. Strategies and challenges in recruiting interview partic-
ipants for a qualitative evaluation. In International Workshop on Recruiting Participants for

Empirical Software Engineering (RoPES), 2022.

3 4. Carolin Brandt. Incremental just-in-time test generation in lock-step with code development.
In International Summer School on Search- and Machine Learning-Based Software Engineering

(SMILESENG), page 35, 2022.

5. Casper Boone, Carolin E. Brandt, and Andy Zaidman. Fixing continuous integration tests
from within the IDE with contextual information. In IEEE/ACM International Conference on

Program Comprehension (ICPC), pages 287–297. ACM, 2022.

4. Nienke Nijkamp, Carolin Brandt, and Andy Zaidman. Naming amplified tests based on
improved coverage. In IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 237–241. IEEE, 2021.

3. Wessel Oosterbroek, Carolin Brandt, and Andy Zaidman. Removing redundant statements in
amplified test cases. In IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 242–246. IEEE, 2021.

164 List of Publications

2. Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. LogChunks: A data
set for build log analysis. In International Conference on Mining Software Repositories (MSR),
pages 583–587. ACM, 2020.

1. Monika Pichlmair, Carolin Brandt, Marcel Henrich, Alexander Biederer, Ilhan Aslan, Björn
Bittner, and Elisabeth André. Pen-pen: A wellbeing design to help commuters rest and relax.
In Workshop on Human-Habitat for Health (H3): Human-Habitat Multimodal Interaction for

Promoting Health and Well-Being in the Internet of Things Era, pages 1–9, 2018.

 Included in this thesis.
3 Won a best paper, tool demonstration, or proposal award.

Titles in the IPA Dissertation Series since 2021

D. Frumin. Concurrent Separation Logics

for Safety, Refinement, and Security. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2021-01

A. Bentkamp. Superposition for Higher-

Order Logic. Faculty of Sciences, Depart-
ment of Computer Science, VU. 2021-02

P. Derakhshanfar. Carving Information

Sources to Drive Search-based Crash Repro-

duction and Test Case Generation. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2021-03

K. Aslam. Deriving Behavioral Specifi-

cations of Industrial Software Components.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2021-04

W. Silva Torres. Supporting Multi-Domain

Model Management. Faculty of Mathemat-
ics and Computer Science, TU/e. 2021-05

A. Fedotov. Verification Techniques for

xMAS. Faculty of Mathematics and Com-
puter Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled Automated

Reasoning. Faculty of Mathematics and
Computer Science, TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-

grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering

Language-Parametric End-User Program-

ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security Moni-

toring in Environments where Digital and

Physical Safety are Critical. Faculty
of Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain

Knowledge for Faster Transactions. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2022-06

P. Vukmirović. Implementation of Higher-

Order Superposition. Faculty of Sci-
ences, Department of Computer Science,
VU. 2022-07

J. Wagemaker. Extensions of (Concurrent)
Kleene Algebra. Faculty of Science, Mathe-
matics and Computer Science, RU. 2022-08

R. Janssen. Refinement and Partiality

for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2022-09

M. Laveaux. Accelerated Verification of

Concurrent Systems. Faculty of Mathemat-
ics and Computer Science, TU/e. 2022-10

S. Kochanthara. A Changing Landscape:

On Safety & Open Source in Automated and

Connected Driving. Faculty of Mathematics
and Computer Science, TU/e. 2023-01

L.M. Ochoa Venegas. Break the Code?

Breaking Changes and Their Impact on Soft-

ware Evolution. Faculty ofMathematics and
Computer Science, TU/e. 2023-02

N. Yang. Logs and models in engineering

complex embedded production software sys-

tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis for

Credit-Based Shaping in Ethernet TSN. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-

ming. Faculty of Mathematics and Natural
Sciences, UL. 2023-05

J. Smits. Strategic LanguageWorkbench Im-

provements. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2023-06

A. Arslanagić. Minimal Structures for Pro-

gram Analysis and Verification. Faculty of
Science and Engineering, RUG. 2023-07

M.S. Bouwman. Supporting Railway Stan-

dardisation with Formal Verification. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-

tions for Deductive Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight

Specification and Verification Techniques for

Enterprise Software. Faculty of Mathemat-
ics and Computer Science, TU/e. 2023-10

D.M. Groenewegen. WebDSL: Linguistic

Abstractions for Web Programming. Fac-

ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2023-11

D.R. do Vale. On Semantical Methods for

Higher-Order Complexity Analysis. Faculty
of Science, Mathematics and Computer Sci-
ence, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test Case

Generation with Multiple Tribes of AI. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2024-02

B. van den Heuvel. Correctly Communi-

cating Software: Distributed, Asynchronous,

and Beyond. Faculty of Science and Engi-
neering, RUG. 2024-03

H.A. Hiep. New Foundations for Separation

Logic. Faculty of Mathematics and Natural
Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For and

With Developers. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2024-05

