%
TUDelft

Using GitHub Copilot for Test Generation
in Python: An Empirical Study

Khalid El Haji, Carolin Brandt, Andy Zaidman
AST 2024

How are tests generated by generic
code LLMs for developers?

%
TUDelft

Invoking Test Generations

def (self) :
'"''"Test all of the twitter.Status properties'''
status = twitter.Status()
. status.id = 1
C)ngu1a| . self.assertEqual (1, status.id)
human-written test created at = calendar.timegm((2007, 1, 26, 23, 17, 14, -1, -1, -1))
status.Ereated_at = 'Fri Jan 26 23:17:14 +0000 2007’
self . assertEqual ('Fri Jan 26 23:17:14 +0000 2007', status.created at)

def (self) :

Strlpped '"''"Test all of the twitter.Status properties’’’
[INSERT]
def (self) :
'"''"Test all of the twitter.Status properties'''
Test generated status = self. GetSampleStatus()
with CXDp"Ot self.assertEqual ('Fri Jan 26 23:17:14 +0000 2007', status.created at)
self . assertEqual (4391023, status.id)
self assertEqual (u'A légparnas hajém tele van angolnakkal.',6 status.text)

self.assertEqual (self. GetSampleUser (), status.user)

%
TUDelft

Project Selection + Study Execution

7 Open-source python projects Generate batch of tests
GitHub (Less popular ones) + GitLab Manually analyze label problems in generation

Repeat until theoretical saturation — 53 test pairs

%
TUDelft

Aspects of Usability

Syntactic Correctness Runtime Correctness

Passing

%
TUDelft

Variation 1: Invoking Generations Without a Test Suite

Original test code file (With-Context) [RQ1]

import pytest
from gcip import Cache, CacheKey, CachePolicy

def test cache policies():
expected members = ["PULL", "PULL PUSH"]
for member in CachePolicy. members :
assert member in expeczgd_membezg

def

test default cache key matches ci commit ref slug():

def test cache key with custom value():
cache key = CacheKey (key="mykey")

expected render = "mykey"
assert expected render == cache key.render()
assert cache key.key == "mykey"

assert cache key.files is None
assert cache key.prefix is None

%
TUDelft

Stripped test code file (Without-Context) [RQ2]

import pytest
from gcip import Cache, CacheKey, CachePolicy

def
test default cache key matches ci commit ref slug():

Copilot Generations With + Without Testsuite Context

30
27
25 24
20
15
11
10
10 9 9
8
5 4
3
B L 1
0 .
Passing Tests Failing Tests Broken: Syntax Err Broken: Runtime Err Empty Generation

m With Context mWithout Context

]
TUDelft

What were the problems?

]
TUDelft

I Without-Context (RQ>)

Unresolved Reference B With-Context (RQ1)

Syntax Error

Lookup Error
Non-existent Attribute
Incorrect Parameters
1

Failure to Catch Exception 1

Empty Generation 1

Failing Assertion

Observation: Mimicking Behavior

Test generated by Copilot

Similar test in the same test file

%
TUDelft

Edit Similarity
(higher is more similar)

o
(o]

o © o
N IN o

o

def
Hclin , paramS
assert n_g" nn
4
assert n_g" w_mn
4
def
"cli", params
assert n_g" nn
4
assert , n_g"
I
o]
(o]
o o -

With-C'ontext
(passing)

With-dontext
(all gen.)

Without:Context Withouthontext

(all gen.)

(passing)

"-c"], optional=True
"w_ _help "
"-¢c"], count=True

"w_ _help "

Variation 2: Different Test Method Comments

Minimal Method Comment (e.g, """Test the x function""")
Behavior-Driven Development Comment (e.g, """Given x when y then z""")
Usage Example Comment (e.g, """example: <code snippet> gives: <output>""")

Combined Comment - For 23 tests where generation did not work

- Formulate comments based on original test

4 .
TU Delft - Manually analyze problems again

Variation 2: Different Test Method Comments

Minimal
With-Context Method
Comment
Passing 21.74%
Failing 34.78%
Broken 30.43%
Empty 13.04%

%
TUDelft

Behavior-Driven Usage
Development Example
Comment Comment
26.09% 34.78%
30.43% 34.78%
30.43% 17.39%
13.04% 13.04%
Without-
Context
Passing
Failing
Broken
Empty

Combined
Comment
26.09%
34.78%
26.09%
13.04%
Minimal Behavior-Driven
Method Development
Comment Comment
17.39% 13.04%
30.43% 26.09%
52.17% 60.87%
0.00% 0.00%

Usage
Example
Comment
21.74%
30.43%
47.83%

0.00%

Combined
Comment

21.74%
47.83%
30.43%

0.00%

Takeaways

Generating tests within an existing test suite: Generating tests without an existing test suite:

Poor usability, most generations will need to be Extremely poor usability, almost all generations

edited will need to be edited

A code example in test method comments Instructive natural language combined with a

improves usability code example in test method comments improves
usability

Generations will likely mimic existing tests, can
be useful for writing repetitive tests

Using GitHub Copilot for Test Generation
in Python: An Empirical Study
Khalid El Haji, Carolin Brandt, Andy Zaidman

fUDelft AT 202

How are tests generated by
generic code LLMs for developers?

Mon 15 April --- 14:00 --- Test Generation Session at Amalia Rodrigues

Using GitHub Copilot for Test Generation
in Python: An Empirical Study

Khalid EI Haji, Carolin Brandt, Andy Zaidman

]
TUDelft AST 2024

