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How are tests generated by generic
code LLMs for developers?
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Invoking Test Generations

def (self) :
'"''"Test all of the twitter.Status properties'''
status = twitter.Status()
. status.id = 1
C)ngu1a| . self.assertEqual (1, status.id)
human-written test created at = calendar.timegm( (2007, 1, 26, 23, 17, 14, -1, -1, -1))
status.Ereated_at = 'Fri Jan 26 23:17:14 +0000 2007’
self . assertEqual ('Fri Jan 26 23:17:14 +0000 2007', status.created at)

def (self) :

Strlpped '"''"Test all of the twitter.Status properties’’’
[ INSERT]
def (self) :
'"''"Test all of the twitter.Status properties'''
Test generated status = self. GetSampleStatus()
with CXDp"Ot self.assertEqual ('Fri Jan 26 23:17:14 +0000 2007', status.created at)
self . assertEqual (4391023, status.id)
self assertEqual (u'A légparnas hajém tele van angolnakkal.',6 status.text)

self.assertEqual (self. GetSampleUser (), status.user)
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Project Selection + Study Execution

7 Open-source python projects Generate batch of tests
GitHub (Less popular ones) + GitLab Manually analyze label problems in generation

Repeat until theoretical saturation — 53 test pairs
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Aspects of Usability

Syntactic Correctness Runtime Correctness

Passing
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Variation 1: Invoking Generations Without a Test Suite

Original test code file (With-Context) [RQ1]

import pytest
from gcip import Cache, CacheKey, CachePolicy

def test cache policies():
expected members = ["PULL", "PULL PUSH"]
for member in CachePolicy. members :
assert member in expeczgd_membezg

def

test default cache key matches ci commit ref slug():

def test cache key with custom value():
cache key = CacheKey (key="mykey")

expected render = "mykey"
assert expected render == cache key.render()
assert cache key.key == "mykey"

assert cache key.files is None
assert cache key.prefix is None
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Stripped test code file (Without-Context) [RQ2]

import pytest
from gcip import Cache, CacheKey, CachePolicy

def
test default cache key matches ci commit ref slug():



Copilot Generations With + Without Testsuite Context
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What were the problems?
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I Without-Context (RQ>)

Unresolved Reference B With-Context (RQ1)

Syntax Error

Lookup Error
Non-existent Attribute
Incorrect Parameters
1

Failure to Catch Exception 1

Empty Generation 1

Failing Assertion




Observation: Mimicking Behavior

Test generated by Copilot

Similar test in the same test file
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Edit Similarity
(higher is more similar)
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Variation 2: Different Test Method Comments

Minimal Method Comment (e.g, """Test the x function""")
Behavior-Driven Development Comment (e.g, """Given x when y then z""")
Usage Example Comment (e.g, """example: <code snippet> gives: <output>""")

Combined Comment - For 23 tests where generation did not work

- Formulate comments based on original test

4 .
TU Delft - Manually analyze problems again



Variation 2: Different Test Method Comments

Minimal
With-Context Method
Comment
Passing 21.74%
Failing 34.78%
Broken 30.43%
Empty 13.04%
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Behavior-Driven Usage
Development Example
Comment Comment
26.09% 34.78%
30.43% 34.78%
30.43% 17.39%
13.04% 13.04%
Without-
Context
Passing
Failing
Broken
Empty

Combined
Comment
26.09%
34.78%
26.09%
13.04%
Minimal Behavior-Driven
Method Development
Comment Comment
17.39% 13.04%
30.43% 26.09%
52.17% 60.87%
0.00% 0.00%

Usage
Example
Comment
21.74%
30.43%
47.83%

0.00%

Combined
Comment

21.74%
47.83%
30.43%

0.00%



Takeaways

Generating tests within an existing test suite: Generating tests without an existing test suite:

Poor usability, most generations will need to be Extremely poor usability, almost all generations

edited will need to be edited

A code example in test method comments Instructive natural language combined with a

improves usability code example in test method comments improves
usability

Generations will likely mimic existing tests, can
be useful for writing repetitive tests
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How are tests generated by
generic code LLMs for developers?

Mon 15 April --- 14:00 --- Test Generation Session at Amalia Rodrigues
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