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ABSTRACT
Writing unit tests is a crucial task in software development, but

it is also recognized as a time-consuming and tedious task. As

such, numerous test generation approaches have been proposed

and investigated. However, most of these test generation tools

produce tests that are typically difficult to understand. Recently,

Large Language Models (LLMs) have shown promising results in

generating source code and supporting software engineering tasks.

As such, we investigate the usability of tests generated by GitHub

Copilot, a proprietary closed-source code generation tool that uses

an LLM.We evaluate GitHub Copilot’s test generation abilities both

within and without an existing test suite, and we study the impact

of different code commenting strategies on test generations.

Our investigation evaluates the usability of 290 tests generated by

GitHub Copilot for 53 sampled tests from open source projects. Our

findings highlight that within an existing test suite, approximately

45.28% of the tests generated by Copilot are passing tests; 54.72%

of generated tests are failing, broken, or empty tests. Furthermore,

if we generate tests using Copilot without an existing test suite in

place, we observe that 92.45% of the tests are failing, broken, or

empty tests. Additionally, we study how test method comments

influence the usability of test generations.
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1 INTRODUCTION
The act of writing unit tests is a critical but tedious task for software

engineers, considered one of the most “labor-intensive tasks in soft-

ware testing” [3]. In part due to the time-consuming and repetitive

act of writing unit tests, software engineers frequently neglect writ-

ing unit tests [7][11]. Automatic unit test generation has been one

approach to address the labor-intensive aspect of writing unit tests.

Tools such as EvoSuite and Randoop are two well-known tools

for automatically generating tests [13, 22]. These automatic unit
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test generation tools respectively rely on search-based optimiza-

tion and feedback-directed techniques for test generation. While

tests generated with these approaches achieve high structural cov-

erage [24], the readability and understandability of the tests are

worrisome [10, 14, 15]. Furthermore, the application of these auto-

matic unit test generation tools in the industry is limited, in part

due to software engineers having to spend a considerable amount

of time analyzing the output of such tools when using them [4, 14].

GitHub Copilot
1
is a commercial code generation tool that uses

a LLM to produce code suggestions (henceforth, called generations)

based on comments and code context. LLMs are generative lan-

guage models that are built using deep learning techniques (often

employing a Transformer-based [26] architecture. Copilot uses a

version of the OpenAI’s
2
Codex LLM. Copilot’s generations have

been shown to improve perceived developer productivity in a study

from GitHub itself [30]. LLMs demonstrate promising results in nu-

merous software engineering tasks, such as programming language

translation [27], code completion [12], and code summarization [1].

LLMs are capable of “producing natural-looking completions for

both natural language and source code” [23]. Fittingly, research

on Copilot’s generations has shown that Copilot produces read-

able and understandable generations, with similar complexity to

human-written code [2, 20].

We hypothesize that GitHub Copilot canmakewriting tests a less

time-consuming and tedious act for software engineers. However,

a crucial element to investigate is how usable the generated tests
are, i.e., Copilot might be able to generate a unit test, but that does

not mean that the test can be (directly) used by a software engineer

as the test may contain a syntax or runtime error. To evaluate

the usability of Copilot’s test generating ability we define several

aspects of usability. In general, we define a usable generation as

a generation from Copilot that could be directly used in a test

suite without any modification. We consider usability to be a range

and not binary. In particular, we consider the following aspects

for usability:
3 Syntactic Correctness, Runtime Correctness,

Passing (the generated test should be a non-empty passing test),

and Coverage (the generated test should cover the same branches

as the same test written by a human).

A test can be generated within and without the context of an

existing test suite. Copilot uses code context (code and comments)

to produce its generations. Thus, test generation made within an

existing test suite (test code context) may be influenced by the

surrounding code context. Hence, we investigate the usability of

tests generated within an existing test suite (𝑅𝑄1) and without an

1
GitHub Copilot: https://github.com/features/copilot, last visited October 23rd, 2023.

2
OpenAI: https://openai.com/, last visited October 23rd, 2023

3
These aspects are partially based on earlier work by Schäfer et al. [23] and Xie

et al. [28] who devised ways to evaluate the “quality” of LLM-generated tests.
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Project Domain Provider LOC # Test
Classes

# Tests
Methods

click CLI GitHub 21371 0 327

pyexperiment research GitHub 6492 36 239

django-multiurl web development GitHub 266 1 8

python-crontab DevOps GitLab 1927 19 176

exif image handling GitLab 6007 7 51

python-lottie file manipulation GitLab 24307 35 195

pyspread GUI application GitLab 21481 14 173

Table 1: List of open-source Python projects fromwhich tests
were sampled.

existing test suite (𝑅𝑄2). The latter scenario is especially impor-

tant to understand the usability of generated tests when no tests

have been written yet. By varying the code and code comments a

software engineer writes in their code file before invoking Copilot,

they can influence the generation they receive from Copilot. This

begs the question of how code comments should be formulated to

attain the most usable test generation. In particular, we evaluate the

usability of test generations using different test method comment

strategies both within (𝑅𝑄3) and without (𝑅𝑄4) an existing test

suite. In summary, we intend to address the following questions:

RQ1 How usable is a test generated by GitHub Copilot within the

context of an existing test suite?

RQ2 How usable is a test generated by GitHub Copilot without
the context of an existing test suite?

RQ3 How should a test method comment be formulated to attain

a usable test generation from GitHub Copilot within the

context of an existing test suite?

RQ4 How should a test method comment be formulated to attain

a usable test generation from GitHub Copilot without the
context of an existing test suite?

2 STUDY DESIGN
In order to study the usability of tests generated we randomly

sampled tests from open-source projects and then invoke Copilot to

“regenerate” the tests in different scenarios (each research question

is a different scenario).

2.1 Project Selection
We select seven open-source Python projects for our evaluation. We

chose Python projects as Python is the best supported programming

languages for Codex [8]. We now describe how we selected the

projects, sampled tests, and defined our aspects of usability.

Projects were selected from GitLab
4
and GitHub. Codex has been

trained on public GitHub open-source projects [8]. Caution must

be exercised on selecting projects to prevent Copilot from simply

regurgitating training data from GitHub. Hence, we include open-

source projects from GitLab. We have intentionally selected mostly

less popular projects, as we conjecture that Codex has been trained

on source code from more popular open-source projects. Similar

LLMs found in the literature often use popular open-source projects

for their pre-training [12, 27]. Although, we ultimately can only

speculate which projects Codex has been trained on. Furthermore,

we only consider projects for which the test suites use the pytest
5

4
GitLab: https://about.gitlab.com/, last visited October 25th, 2023.

5
pytest: https://docs.pytest.org/en/7.2.x/

or unittest
6
framework to simplify the coverage analysis we need.

The final set of projects in Table 1 were selected to have a diverse

set of software domains ranging from a GUI application to simple

file manipulation, and to have a diverse range of project sizes.

2.2 Sampling and Manual Labelling
Early manual evaluation of a subset of test methods indicated that

the presence of a method comment influences the test generated

by Copilot. Hence, we split the test methods into two strata: test

methods with comment and test methods without comment. We

then employ stratified sampling to select tests. We randomly select

one test method with a comment and one without a comment for

each project. This results in a batch (set of tests) containing sampled

tests with and without comments for all projects. Some projects

have no or only a few tests with comments, and vice versa. Hence,

the batch size can vary each time a new one is created.

For each sampled test𝑇𝑖 we use Copilot to create a generation𝐺𝑖 .

We call 𝑇𝑖 the original, or human-written test. Every pair (𝑇𝑖 ,𝐺𝑖 ) is
assigned code aspect labels. Code aspect labels intend to reveal the

deficiencies of generations (such as the runtime or syntax errors).

These labels are iteratively created based on manual inspection of

a generation 𝐺𝑖 and original test 𝑇𝑖 . For example, a generated test

might be failing due to not catching an exception. This pair would

then be assigned a label such as failure_to_catch_exception
among other code aspect labels. We continue to create batches of

test methods until we reach a point of theoretical saturation for

the code aspect labels. This initial set of test pairs (𝑇𝑖 ,𝐺𝑖 ) resulting
from the sampling until saturation is called 𝑂 .

2.3 Aspects of Usability
Recall that we define a usable generation as a test generation that

could be directly used in a test suite without any modification. We

define and justify our usability aspects as follows:

Syntactic Correctness. Syntax errors occur when a generation

𝐺𝑖 can not be parsed by Python due to incorrect syntax usage. In

turn, this renders the generation 𝐺𝑖 as broken; as a generation

with a syntax error requires modification before it can be em-

ployed in a test suite. Hence, negatively impacting the usability.

Runtime Correctness. A generation without syntax errors may

still contain runtime errors. For example, this occurs when a

generation𝐺𝑖 is passing an incorrect value to a parameter of a

method. Similar to a generation with a syntax error, a generation

with a runtime error requires modification and thus negatively

impacts usability.

Passing. A syntactically correct and runtime error-free generation

may still be a failing test. We prefer a passing test generation

over a failing one, as it requires fewer modifications to use in

a test suite. Nevertheless, a failing test generation can expose

new faults. It is possible that the oracles in the generated test

are correct, but the code under test (CUT) is flawed. Similarly, a

passing test might unintentionally comply with faulty behavior

exhibited by the CUT.We assume that the CUT is correct, because

of the original test𝑇𝑖 passing. Hence, a generation that is a failing

test requires modification before it can be employed in a test suite,

which negatively impacts the usability.

6
unittest: https://docs.python.org/3/library/unittest.html

https://github.com/pallets/click
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https://docs.pytest.org/en/7.2.x/
https://docs.python.org/3/library/unittest.html
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Coverage. When considering a test pair (𝑇𝑖 ,𝐺𝑖 ) we can determine

the branches covered by the two tests𝑇𝑖 and𝐺𝑖 separately. When

the same branches are covered by 𝐺𝑖 as in 𝑇𝑖 , we consider the

generation 𝐺𝑖 as a more usable generation than when 𝐺𝑖 covers

fewer of the same branches. If 𝐺𝑖 covers less branches than 𝑇𝑖 ,

𝐺𝑖 would require modification to ensure it covers all branches

as in the “intended” human-written test 𝑇𝑖 . This intention is

visible to Copilot because we leave the original method signature

(and method comment). We consider covering fewer of the same

branches as the original test, to negatively impact the usability

of the test.

Syntactic Correctness, Runtime Correctness, and Passing are

determined for all Copilot generations using the iteratively assigned

code aspects labels.

2.4 Invoking Generations
We invoke a generation from Copilot for a given original test 𝑇𝑖 by

stripping the test method body, and then “regenerating” the test

method body using Copilot directly in an IDE.
7
For example, in

Listing 1 we have a test method from the pyspread project. In List-

ing 2 we have the same test method but stripped. This stripped test

method would then be used to invoke a generation from Copilot.

The token [INSERT] indicates from which position a Copilot gen-

eration is requested, this token is not included in the final stripped

test used for invoking a generation.

1 def test_set_row_height(self):
2 """ Unit test for set_row_height """
3

4 self.data_array.set_row_height (7, 1, 22.345)
5 assert self.data_array.row_heights [7, 1] == 22.345

Listing 1: Example method from the pyspread project.
1 def test_set_row_height(self):
2 """ Unit test for set_row_height """
3 [INSERT]

Listing 2: Stripped example method from the pyspread project.

As a result of this stripping process we have the original test𝑇𝑖 and a
generated test 𝐺𝑖 . This allows us to compare to what a human pro-

grammer would have written in that context. Furthermore, because

we leave the method signature (and method comment, if available)

Copilot has some information of the CUT being targeted. We are

effectively simulating writing tests using GitHub Copilot in an IDE.

2.5 With- and Without-Context
For every test invoked within an existing test suite (With-Context),

we also invoke the test without an existing test (Without-Context).

Meaning that all test files (except the test file of the original test)

are deleted. Within the test file of the original test, all other test

methods are deleted. This results in a single test file, with a single

test method. Code imports, and helper/utility functions are kept.

2.6 Varying Test Method Comments
During the stripping process, the test method comment can be

changed. We evaluate the usability of generations with varying

test method comment strategies, to determine how a test method

7
GitHub Copilot does not provide an official API, hence we manually use Copilot in

an IDE.

comment should be formulated to attain the most usable test gen-

erations. We use a smaller subset of𝑂 called𝑀 to evaluate method

comment strategies. This subset𝑀 contains failing test pairs (𝑇𝑖 ,𝐺𝑖 )
belonging to the following projects: django-multiurl, pyspread,
click, exif, and python-crontab. A failing test pair is a test pair

for which the generation 𝐺𝑖 is not a passing test or empty. We se-

lected failing test pairs from only these five aforementioned projects

to simplify the method comment formulation process.

We devise four method comment strategies which we evaluate.

This means that for every pair in (𝑇𝑖 ,𝐺𝑖 ) ∈ 𝑀 we invoke four

generations with a modified method comment, and investigate

their usability. We define and demonstrate an example for each of

the four strategies using the example test method in Listing 3.

1 def test_no_match(self):
2 with self.assertRaises(urlresolvers.Resolver404):
3 self.patterns_catchall.resolve('/eggs/and/bacon/')

Listing 3: Example method from the django-multirurl project.

(1) Minimal Method Comment. This type of comments provides

a minimal description of a particular test method.

1 def test_no_match(self):
2 """ Test the resolve function """
3 [INSERT]

Listing 4: Test method with a Minimal Method Comment.

(2) Behavior-Driven Development Comment. This type of com-

ment provides a Behavior-Driven Development scenario descrip-

tion of a particular test method. The basic structure of the for-

mulation is as follows: “Given 𝑥 when 𝑦 then 𝑧.”

1 def test_no_match(self):
2 """ Given that I resolve a URL
3 when that URL does not match
4 then an exception should be raised """
5 [INSERT]

Listing 5: Test method with a Behavior-Driven Development
Comment.

(3) Usage Example Comment. This type of comments provides

a code snippet containing a possible call of the CUT, as a usage

example. The example does not need to relate to a specific sce-

nario a test is testing, but only to the CUT. This approach is based

on earlier LLM test generation work by Schäfer et al. [23].

1 def test_no_match(self):
2 """ example usage:
3

4 url = urlresolvers.URLResolver(RegexPattern(r '^/'), [
5 multiurl(
6 url(r '^(\w+)/$', x, name='x')
7 )
8 ])
9 url.resolve('/jane/')
10

11 gives:
12

13 ResolverMatch () object """
14 [INSERT]

Listing 6: Test method with a Usage Example Comment.

(4) Combined. Finally, we combine all aforementioned comment

formulations in a single method comment.
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(𝑛 = 53) With-Context Without-Context

Passing Tests 24 (45.28%) 4 (7.55%)

Failing Generations 29 (54.72%) 49 (92.45%)

– Failing Tests 9 (16.98%) 10 (18.87%)

– Broken Tests 12 (22.64%) 38 (71.70%)

– Syntax Error 3 (5.66%) 11 (20.75%)

– Runtime Error 9 (16.98%) 27 (50.94%)

– Empty Generation 8 (15.09%) 1 (1.89%)

Table 2: Breakdown of all Copilot generations for 𝑅𝑄1,2.

The method comments were manually formulated by the first

two authors. They independently formulated the comments using

two proper subsets of𝑀 , where an intersection of those two subsets

was first discussed to come to a negotiated agreement on how to

formulate each type of method comment.

2.7 Study Execution
Within this research we consider the first suggestion (generation)

provided when GitHub Copilot is invoked, and do not consider the

alternative suggestions (when they are available) to allow for a con-

sistent and fair comparison.
8
Suggestions were manually invoked

in the PyCharm IDE version 2022.2.4 with the GitHub Copilot plu-

gin version 1.2.3.2385. All generations requested from Copilot in

this study occurred between December 2022 and May 2023. All

coverage computation was done using Coverage.py.
9

3 RESULTS
Within this section we report the results for all the research ques-

tions. We combine the results of 𝑅𝑄1 and 𝑅𝑄2 to allow us to easily

compare them. Idem for 𝑅𝑄3 and 𝑅𝑄4.

3.1 𝑅𝑄1,2 : How usable is a test generated by
GitHub Copilot within and without the
context of an existing test suite?

In total 53 test pairs (𝑇𝑖 ,𝐺𝑖 ) were considered, forming the set 𝑂 .

All considered test pairs (𝑇𝑖 ,𝐺𝑖 ) ∈ 𝑂 were labelled with one or

multiple code aspects. All labels created (with their definition) can

be found in Table 3. The code aspect labels were iteratively created,

we stopped sampling sets of tests when there were no more new

code aspect labels that could be created (theoretical saturation).

In Table 2 we find that 54.72% (29 generated tests) of all genera-

tions With-Context and 92.45% (49 generated tests) of all genera-

tions Without-Context are failing generations. A failing generation

is a generation 𝐺𝑖 that is a failing, broken, or empty test gener-

ated by Copilot. We define a broken test as a test with either a

syntax or runtime error. We discuss the usability aspect of these

test generations in the following subsections.

3.1.1 Syntax and Runtime Correctness. In Table 2 we find that

22.64% of With-Context and 71.70% of Without-Context tests gen-

erations are broken tests. We have identified six reasons demon-

strating why these syntax and runtime errors occur in broken tests,

and we illustrate them with an example:

8
Getting started with GitHub Copilot (Seeing alternative suggestions):

https://docs.github.com/en/copilot/getting-started-with-github-copilot#seeing-

alternative-suggestions, last visited October 25th, 2023.

9
Coverage.py: https://github.com/nedbat/coveragepy, last visited October 25th, 2023.

Figure 1: Code aspects of failing generations (𝑅𝑄1,2).

(1) Syntax Error. In all test generations containing a Syntax Error,
both With- and Without-Context, the failing generation appears

to be incomplete which results in a Syntax Error. Up to the last

row of every generated test method with a Syntax Error all code

is syntactically correct. In Listing 7 for example, the generated

test_captures_stdout_stderr method fails because the last

row of the generation is incomplete — it misses a closing quote

and parenthesis.

1 def test_captures_stdout_stderr(self):
2 """ Test capturing stdout and stderr from print
3 """
4 message = "This should be captured ..."
5

6 buf = io.StringIO ()
7 with stdout_err_redirector(buf):
8 print(message)
9 print(message , file=sys.stderr)
10

11 self.assertEqual(buf.getvalue (), message + '\n' + message
+ '\

Listing 7: Failing generation due to an Syntax Error. On row 11 the
single quote and parenthesis should be closed.

Code Aspect La-
bel

Definition

Assert Mismatch Contains an assertion that evaluates to false.

Empty Genera-

tion

Received an empty generation fromGitHub Copilot.

Incorrect Parame-

ters

Uses keyword arguments (parameters) of a class or

method incorrectly. Either by passing down inap-

plicable objects or values, or by passing down an

incorrect number of arguments.

Syntax Error The generated test contains a syntax error.

Non-existent At-

tribute

Uses an attribute of an object, but the attribute does

not exist or is not subscriptable.

Unresolved Refer-

ence

Contains a reference to an object which does not

exist in the namespace.

Failure to Catch

Exception

Raises an exception which is not captured, but

should be captured (as can be determined from the

original test).

Lookup Error Uses a key of an object, but the key does not exist.

Table 3: List of code aspect labels with their definition.

https://docs.github.com/en/copilot/getting-started-with-github-copilot#seeing-alternative-suggestions
https://docs.github.com/en/copilot/getting-started-with-github-copilot#seeing-alternative-suggestions
https://github.com/nedbat/coveragepy
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(2) Incorrect Parameters. Incorrect Parameters result in a fail-

ing generation when the keyword arguments (parameters) be-

ing passed down are not the expected parameters for a par-

ticular class or method. For example in Listing 8, the method

test_option_optional is using a keyword argument optional
in the creation of a class instance of an Option object. However,

the keyword optional does not exist for an Option object. A

TypeError is thrown noting the unexpected keyword argument

(i.e., incorrect parameter). Another form by which Incorrect Pa-

rameters result in failing generations is when the parameters

being used do exist, but are provided an incorrect value. For

example, when an integer is expected but a string is given.

1 def test_option_optional ():
2 cli = Command("cli", params =[ Option (["-c"], optional=True

)])
3 assert _get_words(cli , ["-c"], "") == []
4 assert _get_words(cli , ["-c"], "-") == ["--help"]

Listing 8: Failing generations due to an Incorrect Parameter. On row
2 the class Option does not have an argument optional.

(3) Non-existent Attribute. Non-existent Attribute occurs when
an attribute of an object is being used, and the attribute does

not exist or is not subscriptable (i.e., Copilot assumes an object

contains other objects which can be accessed). For example in

Listing 9, test_modify_ascii_same_len fails because the ob-

ject self.image does not contain the attribute _update_exif().

1 def test_modify_ascii_same_len(self):
2 """ Verify that writing a same length string to an

ASCII tag updates the tag."""
3 self.image.model = "Canon EOS 5D Mark III"
4 self.image._update_exif ()
5 check_value(self , self.image.model , "Canon EOS 5D

Mark III")
6 check_value(self , self.image._get_exif (),

MODIFY_ASCII_SAME_LEN_HEX_BASELINE)

Listing 9: Failing generations due to an Non-Existent Attribute. The
_update_exif() attribute does not exist for self.image.

(4) Unresolved Reference. In a generation with an Unresolved

Reference, a reference is made to an object which does not exist.

For example, the generated test method (see Listing 10) con-

tains the usage of a class named CronRange. This results in a

NameError stating that CronRange is not defined. Within the

project there does exist a class named CronRange. However, it is
not imported and thus does not exist in the namespace.

1 def test_18_range_cmp(self):
2 """ Compare ranges """
3 self.assertEqual(CronRange('*/6'), CronRange('*/6'))
4 self.assertNotEqual(CronRange('*/6'), CronRange('*/7'))
5 self.assertNotEqual(CronRange('*/6'), CronRange('*/6-7'))

Listing 10: Failing generations due to an Unresolved Reference. The
CronRange object does not exist.

(5) Failure to Catch Exception. In a generation with a Failure

to Catch Exception, an exception is raised which is meant to

be caught, but the generation fails to do so, e.g., in Listing 11

the generated test method test_cli fails because a SystemExit
exception is thrown by parser.parse_args() in some cases

(this is a parametrized test).

1 def test_cli(argv , res):
2 """ Test cli"""
3

4 with patch.object(sys , 'argv', argv):
5 parser = PyspreadArgumentParser ()
6 args = parser.parse_args ()
7

8 if res is not None:
9 assert args == res
10 else:
11 assert args is None

Listing 11: Failing generations due to an Failure to Catch Exception.

(6) Lookup Error. Similar to Non-existent Attribute, but instead

a key or index value is being used which does not exist. For

example, the generated test method test_06_env_access (see
Listing 12) fails because the key value CRON_VAR does not exist
in self.crontab.env. Another Lookup Error is when an out of

range index value is used on a list or array.

1 def test_06_env_access(self):
2 """ Test that we can access env variables """
3 self.assertEqual(self.crontab.env['PERSONAL_VAR '], 'bar')
4 self.assertEqual(self.crontab.env['CRON_VAR '], 'fork')
5 self.assertEqual(self.crontab [0]. env['CRON_VAR '], 'fork')
6 self.assertEqual(self.crontab [1]. env['CRON_VAR '], 'spoon '

)
7 self.assertEqual(self.crontab [2]. env['CRON_VAR '], 'knife '

)
8 self.assertEqual(self.crontab [3]. env['CRON_VAR '], 'knife '

)
9 self.assertEqual(self.crontab [3]. env['SECONDARY '], 'fork'

)

Listing 12: Failing generations due to an Lookup Error. The key value
self.crontab.env[’CRON_VAR’] does not exist.

In Figure 1 we observe that tests generated Without-Context

have an increase in overall occurrence of Non-existent Attributes

(366.67%), Incorrect Parameters (200%), Syntax Errors (266.67%), and

Unresolved References (200%) when compared to tests generated

With-Context. Tests generated Without-Context have a decrease

of 87.5% in Empty Generation occurrences. Failing generations,

both With- and Without-Context, fail for reasons such as having

Non-existent Attributes and Incorrect Parameters. These reasons

for failing generations are particularly prominent in generations

Without-Context. This suggests that Copilot does not consider

the CUT, but only other test methods in its context. Due to the

closed-source nature of Copilot, the exact context used to prompt

generations can only be speculated. It may be due to the limited

context length (4096 tokens) of Codex [8, 25].

Observation I
Our findings suggest that GitHub Copilot does not consider the

CUT when invoking Copilot to generate tests written in files

separate from the code.

3.1.2 Passing. In Table 2 we find that 45.28% and 7.55% of the

generated tests were passing for With- and Without-Context (re-

spectively). Our manual inspection of passing tests With-Context

reveals that some passing tests appear to “mimic” tests in their

direct test context (in the same test file). To demonstrate the mim-

icking behavior we show a generated test in Listing 13 and a test

in its direct context in Listing 14.
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Figure 2: Box plot of the edit similarities between every 𝐺𝑖

and the most similar test 𝑇 in the direct context of 𝐺𝑖 for
𝑅𝑄1,2. An edit similarity of 𝑠 (𝑥,𝑦) = 1would indicate an exact
copy. Empty generations are excluded.

1 def test_option_optional ():
2 cli = Command("cli", params =[ Option (["-c"], optional=True

)])
3 assert _get_words(cli , ["-c"], "") == []
4 assert _get_words(cli , ["-c"], "-") == ["--help"]

Listing 13: A test generated by Copilot.

1 def test_option_count ():
2 cli = Command("cli", params =[ Option (["-c"], count=True)])
3 assert _get_words(cli , ["-c"], "") == []
4 assert _get_words(cli , ["-c"], "-") == ["--help"]

Listing 14: A highly similar test in the test context of Listing 13.

The generated test in Listing 13 appears to be mimicking the test

in Listing 14. To further capture this mimicking behavior we com-

pute the edit similarity between the generated test and every other

test in its direct test context. We compute the edit similarity for a

given test 𝑇 in the direct test context 𝐺𝑖 as follows:
10 𝑠 (𝑇,𝐺𝑖 ) =

1− 𝑑 (𝑇,𝐺𝑖 )
max( |𝑇 |, |𝐺𝑖 | ) where 𝑑 (𝑥,𝑦) is the Levenshtein distance between

𝑥 and 𝑦. For each generated test 𝐺𝑖 we find the most similar test

𝑇 in the direct context of 𝐺𝑖 , resulting in a set of edit similarities

consisting of the edit similarity value between every 𝐺𝑖 (exclud-

ing empty generations) and the most similar test 𝑇 in the direct

context of 𝐺𝑖 . In Figure 2 we have a box plot summarizing all edit

similarities for both With- and Without-Context. Overall, we can

see that generations 𝐺𝑖 With-Context are similar to some test 𝑇 in

the direct context of𝐺𝑖 . This effect is particularly pronounced for

passing tests, which are even more similar. It appears that Copi-

lot is mimicking tests in the direct context for its test generations.

Without-Context, Copilot cannot mimic tests in the direct context,

and hence the generations are less similar.

Observation II
Our findings suggest that GitHub Copilot depends on the direct

test context (i.e., the test file in which Copilot is invoked) to pro-

duce passing tests. Often, mimicking a neighboring test method

when generating a test method.

Moving on, 17.92%11
of tests generated (combining both With-

and Without-Context) are failing tests. To determine correct asserts

10
This approach is based on the work of Schäfer et al. [23] and Ippolito et al. [23] who

employed edit similarity (or alike) to determine how similar a test was to a generated

test in the context of LLM memorization.

11 (9 + 10)/(53 + 53) = 17.92%

is a hard problem in itself: the test oracle problem refers to the

problem of determining correct and incorrect behavior, so that

correct asserts can be formulated [6]. We consider a generation

that is a passing test better than a generation that is a failing test,

as it arguably requires fewer modifications to be used in a test

suite. However, failing tests can actually reveal new faults. Perhaps

the assertions generated in the test are correct, and the CUT is

faulty. Likewise, a passing test may be conforming faulty behavior

of CUT. Nonetheless, we focus on the usability of generations, and

not their fault-finding ability. We assume that the CUT is correct

as the original test is passing. Although it is important to note that

whether a generation is passing or failing does not necessarily say

anything about correctness or incorrectness of the CUT.

Furthermore, we find that 32.07% of tests generatedWith-Context

are failing or empty tests. We find a similar percentage of failing

tests for Without-Context generations, but a 87.5% decrease in oc-

currences of empty tests. Failing tests are those labeled with Assert

Mismatch, Empty Generation occurs when Copilot returns nothing:

(1) Assert Mismatch. Copilot is not able to determine the ex-

pected value of one or multiple assertions for the CUT. For ex-

ample the generated test_handle_bad_attribute method is

asserting whether an AttributeError is raised where the error

messages should match the following string:

"unknown image attribute fake_attribute". Copilot how-
ever fails to generate the correct string (see Listing 15), which

results in an Assert Mismatch (failing test). In this case, Copilot

did not have sufficient information to correctly determine the

string to be matched on.

1 def test_handle_bad_attribute ():
2 """ Verify that accessing a nonexistent attribute raises

an AttributeError."""
3 with open(
4 os.path.join(os.path.dirname(__file__), "grand_canyon

.jpg"), "rb"
5 ) as image_file:
6 image = Image(image_file)
7

8 with pytest.raises(AttributeError , match="image does not
have attribute"):

9 image.fake_attribute

Listing 15: Failing generation due to an Assert Mismatch. The string
being matched on (row 8) should be: "unknown image attribute
fake_attribute".

(2) Empty Generation. The underlying reason for Copilot not re-

turning a generation can only be speculated; it could be caused by

context length limit of Codex [25]. The prompt being formulated

by Copilot based on the code context may be too long for the

model.

3.1.3 Coverage. We compute the branches covered
12

by the origi-

nal and generated test of every passing test pair (𝑇𝑖 ,𝐺𝑖 ) ∈ 𝑂 for both

With- (24 tests) and Without-Context (4 tests). Table 4 provides an

overview of all passing tests generated With- and Without-Context

and their coverage data. Recall that for the coverage usability aspect

we consider generations 𝐺𝑖 covering fewer of the same branches

than the original test 𝑇𝑖 as negatively impacting the usability, and

thus being less suitable with respect to the human-written test 𝑇𝑖 ;

this suitability is captured by the Branch Overlap Ratio (BOR).

12
The lines covered was also considered initially but yielded similar results.
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# Test Name

Diff.
Covered
Branches
(𝑇𝑖 ,𝐺𝑖)

Branch
Overlap
Ratio

1 test_option_custom_class_reusable +7.38% 1.0

2 test_show_true_default_boolean_flag_value 0.0 1.0

3 test_resolve_match_first 0.0 1.0

4 test_resolve_match_last 0.0 1.0

5 test_resolve_match_middle 0.0 1.0

6 test_resolve_match_path_brand 0.0 1.0

7 test_list_all 0.0 1.0

8 test_main_no_processes_long 0.0 1.0

9 test_data_access 0.0 1.0

10 test_on_markup_renderer_pressed 0.0 1.0

11 test_rgb2qimage 0.0 1.0

12 test_insertTable 0.0 1.0

13 test_row 0.0 1.0

14 test_rgb666 0.0 1.0

15 test_set_row_height 0.0 1.0

16 test_get_absolute_access_string 0.0 1.0

17 test_04_number 0.0 1.0

18 test_find_list 0.0 1.0

19 test_06_clear 0.0 0.98

20 test_21_slice_special 0.0 0.8

21 test_progressbar_item_show_func -1.5% 0.98

22 test_remove_layer -11.36% 0.89

23 test_09_removal_during_iter -16.9% 0.81

24 test_command -19.85% 0.85

1 test_get_absolute_access_string 0.0% 1.0

2 test_09_removal_during_iter -4.23% 0.78

3 test_get_context_objects_missing -15.89% 0.87

4 test_handle_bad_attribute -95.92% 0.06

Table 4: Overview of coverage data for all passing test pairs
With- andWithout-Context (𝑅𝑄1,2). Tests below the bold line
are tests generated Without-Context.

When considering passing tests With-Context, we find that 17 of

the 24 (rows 2–18) generated passing tests cover the same branches

as their human-written counterpart 𝑇𝑖 . Only one generated test

(row 1) covers the same and more new branches. The remaining six

generated tests (rows 19–24) cover strictly fewer branches and/or

cover new branches. Hence, most passing tests generated by Copilot

With-Context do not cover fewer branches than the original test𝑇𝑖 ,

which positively impacts the usability. Without-Context, we find

that only one generated test (row 1) covers the same branches as

their human-written counterpart. The remaining generated tests

(rows 2–4) cover fewer and/or new branches. This indicates that

tests generated Without-Context, even if passing, are less suitable.

Observation III
Our findings suggest that 70.1% of all passing tests generated by

GitHub Copilot within the context of an existing test suite cover

the exact same branches as the same tests written by humans.

Identical branches being exercised in the test cases (rows 2–

18) can be partly explained due to most passing tests mimicking

an existing test within the direct test context. As a result of this

mimicking, Copilot may produce a generation that is highly similar

to the original test. This is for example the case when the original

test 𝑇𝑖 has tests in its direct test context which are similar, but each

one exercises a slightly different test scenario (such as the case for

repetitive tests with similar method signatures). Copilot mimics

one of the neighboring tests to produce its generation 𝐺𝑖 , which

ends up being (nearly) identical to the original test𝑇𝑖 . This explains

why the majority of passing tests generated from Copilot in Table 4

cover the exact same branches as the original test 𝑇𝑖 .

3.1.4 Research Answers (𝑅𝑄1,2). Less than half (45.28%) of all gen-

erations invoked within the context of an existing test suite are pass-

ing tests; 54.72% of generations are failing, broken, or empty tests.

Most passing tests cover the same branches as their human-written

counterpart. However, due to the majority of generations being

failing generations, the overall usability of Copilot’s test generation

ability is negatively affected, as close to half of all generations will

require modification before being used in a test suite.

Answer to 𝑅𝑄1

How usable is a test generated by GitHub Copilot within
the context of an existing test suite? The usability of tests

generated by GitHub Copilot within the context of an existing

test suite is poor. Most tests generated will need to be modified.

Aminority (7.55%) of all generations invokedwithout the context

of an existing are passing tests. Themajority (92.45%) of generations

are failing, broken, or empty tests. Passing tests mostly cover fewer

of the same branches as their human-written counterparts. Due to

the majority of generations being failing generations, and passing

tests covering fewer branches, the overall usability of Copilot’s test

generation ability is negatively affected, as most generations will

require modification before being usable in a test suite.

Answer to 𝑅𝑄2

How usable is a test generated by Copilot without the con-
text of an existing test suite? The usability of tests generated

by GitHub Copilot without the context of an existing test suite

is very poor. Almost all tests generated will need to be modified.

3.2 𝑅𝑄3,4 : How should a test method comment
be formulated to attain a usable test
generation from GitHub Copilot within and
without the context of an existing test suite?

In total, we select 23 tests for which the respective generation was

found to be failing in 𝑅𝑄1,2. These test pairs form the set𝑀 . Recall

that for 𝑅𝑄3,4 we formulate four test method comment strategies:

Minimal Method Comment (MMC), Behavior-Driven Devel-
opment Comment (BDDC), Usage Example Comment (UEC),
and Combined Comment (CC). We are interested which of these

four method comment strategies result in the most usable test gen-

erations. We compare each method comment strategy using the

aspects of usability and discuss the best performing ones.

For each test in 𝑇𝑖 in 𝑀 , we apply the four method comment

strategies and then invoke Copilot with the adjusted method com-

ment. This results in four generations for each test 𝑇𝑖 , which we

denote as (𝑇𝑖 ,𝐺𝑖,𝑘 ) where 𝑘 indicates which of the four method

comment strategies was used (e.g., 𝐺𝑖,𝑀𝑀𝐶 ). All pairs (𝑇𝑖 ,𝐺𝑖,𝑘 ) are
assigned code aspect labels using the labels defined in Table 3.

Table 5 presents a breakdown of all test generations for each

method comment strategy, both With- and Without-Context. Fig-

ure 3 shows a summary of code aspects of failing generations for
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With-Context
(𝑛 = 23)
MMC

(𝑛 = 23)
BDDC

(𝑛 = 23)
UEC

(𝑛 = 23)
CC

Passing Tests 5 (21.74%) 6 (26.09%) 8 (34.78%) 6 (26.09%)

Failing Generations 18 (78.26%) 17 (73.91%) 15 (65.22%) 17 (73.91%)

– Failing Tests 8 (34.78%) 7 (30.43%) 8 (34.78%) 8 (34.78%)
– Broken Tests 7 (30.43%) 7 (30.43%) 4 (17.39%) 6 (26.09%)

– Syntax Error 1 (4.35%) 1 (4.35%) 1 (4.35%) 1 (4.35%)

– Runtime Error 6 (26.09%) 6 (26.09%) 3 (13.04%) 5 (21.74%)

– Empty Generations 3 (13.04%) 3 (13.04%) 3 (13.04%) 3 (13.04%)

Without-Context MMC BDDC UEC CC
Passing Tests 4 (17.39%) 3 (13.04%) 5 (21.74%) 5 (21.74%)
Failing Generations 19 (82.61%) 20 (86.96%) 18 (78.26%) 18 (78.26%)

– Failing Tests 7 (30.43%) 6 (26.09%) 7 (30.43%) 11 (47.83%)
– Broken Tests 12 (52.17%) 14 (60.87%) 11 (47.83%) 7 (30.43%)

– Syntax Error 1 (4.35%) 4 (17.39%) 1 (4.35%) 1 (4.35%)

– Runtime Error 11 (47.83%) 10 (43.48%) 10 (43.48%) 6 (26.09%)

– Empty Generations 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Table 5: Breakdown of all Copilot generations for 𝑅𝑄3,4 With-
and Without-Context. Cells in bold highlight the largest
number of passing or failing tests in the row.

both With- and Without-Context for all considered method com-

ment strategies. We find that the application of any one of these

method comment strategies resulted in more passing tests than not

following any of these method comment strategies. We compare

the method comment strategies in the following subsections.

3.2.1 Syntax and Runtime Correctness. Table 5 shows that the Us-
age Example Comment strategy produces generations with the

lowest number of broken tests With-Context. We further find that

With-Context the number of failing tests for the Usage Example
Comment and Combined Comment strategy is the same, but

Without-Context the Combined Comment has more failing tests

and fewer broken tests than the Usage Example Comment de-
spite having the same number of passing tests. This indicates that

a Combined Comment strategy would be more usable than a Us-
age Example Comment strategy when generating tests Without-

Context, as the Combined Comment strategy produces fewer

broken tests while having the same number of passing tests as the

Usage Example Comment strategy Without-Context. We con-

sider broken tests to be less usable than failing tests. Nonetheless, it

will require more effort to formulate a Combined Comment than
aUsage Example Comment. Thus, in practice, aUsage Example
Comment would yield similar results but with less effort.

Minimal Method Comment and Behavior-Driven Develop-
ment Comment produce more broken tests and fewer passing

tests than either the Combined Comment or Usage Example
Comment strategy. This suggests that including a usage code

example as part of the method comment yields more passing tests.

Observation IV
Our findings suggest that test method comment strategies that

include a code usage example result in more passing test gen-

erations than test method comment strategies without a code

usage example.

Figure 3 presents which type of syntax or runtime errors occur

for all the different method comment strategies. We find the same

reasons as found in 𝑅𝑄1,2 apply here, but with different distribu-

tions per comment strategy. We also note that independent of the

comment strategy applied a Without-Context generation results

in an increase in broken tests. The overall occurrence of Incorrect

Parameters and Unresolved References increases for generations

Without-Context independent of comment strategy.

3.2.2 Passing. In Table 5 we see that for With-Context the Usage
Example Comment yields the most passing tests. For Without-

Context, both Usage Example Comment and Combined Com-
ment produce the same number of passing tests. Additionally, we

find that Copilot is mimicking existing tests in the direct test context

(see Section 3.1.2), although the effect is less pronounced overall for

passing tests across all method comment strategies. Furthermore,

we observe that generations Without-Context produce no empty

tests independent of method comment strategy, this is similar to

our earlier finding in 𝑅𝑄1,2: Generations made Without-Context

are less likely to be empty tests. This could be caused by context

length limit of Codex [25]. The prompt being formulated by Copilot

based on the code context may be too long for the model.

Observation V
Our findings suggest that GitHub Copilot is less likely to produce

an empty test generation when there is no test code context.

3.2.3 Coverage. We compute the branches covered for the origi-

nal 𝑇𝑖 and generated 𝐺𝑖,𝑘 for every pair (𝑇𝑖 ,𝐺𝑖,𝑘 ) where 𝐺𝑖,𝑘 is a

passing test. Recall that for the coverage usability aspect we con-

sider covering fewer of the same branches as the original test 𝑇𝑖 as

negatively impacting usability. The ratio of the branches covered

by the original test 𝑇𝑖 and the generated test𝐺𝑖,𝑘 is captured using

the Branch Overlap Ratio. Hence, we compare the different method

comment strategies by computing the average BOR. Generations

which are failing have a BOR of 0 by definition. over all test gener-

ated for each method comment strategy. From Table 6 we observe

that the Usage Example Comment yields the highest average
BOR when considering all tests generated With-Context compared

to other strategies. Likewise, we find that the Combined Com-
ment strategy produces test generations with the highest average

BOR for Without-Context generations.

3.2.4 Research Answers (𝑅𝑄3,4). We find that the Usage Exam-
ple Comment strategy produces the most passing tests (34.78%)

and the least number of broken tests (17.39%) in the context of an

existing test suite. Furthermore, the Usage Example Comment
produces test generations with the highest average ratio of covered

branches overlapping with their human-written counterparts.

With-Context Without-Context
(𝑛 = 5)
MMC

(𝑛 = 6)
BDDC

(𝑛 = 8)
UEC

(𝑛 = 6)
CC

(𝑛 = 4)
MMC

(𝑛 = 3)
BDDC

(𝑛 = 5)
UEC

(𝑛 = 5)
CC

Avg. BOR 0.21 0.25 0.34 0.26 0.17 0.13 0.2 0.21

Table 6: Overview of the average Branch Overlap Ratio for
each method comment strategy. Cells highlighted in bold
indicate the highest average Branch Overlap Ratio in the row.
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Figure 3: Summary of code aspects of failing generations for each method comment strategy for both With- and Without-
Context (𝑅𝑄3,4). AM = Assert Mismatch, EG = Empty Generation, NA = Non-existent Attribute, IP = Incorrect Parameters, SE =
Syntax Error, LE = Lookup Error, FC = Failure to Catch Exception, and UR = Unresolved Reference.

Answer to 𝑅𝑄3

How should a test method comment be formulated to
attain a usable test generation fromGitHubCopilotwithin
the context of an existing test suite? A test method comment

should be formulated with a usage example to attain a usable

generation within the context of an existing test suite.

Likewise, we find that the Combined Comment strategy pro-

duces themost passing tests (21.74%) and the least number of broken

tests (30.43%) without the context of an existing test suite. Further-

more, the Combined Comment produces test generations with
the highest average ratio of covered branches overlapping with

their human-written counterparts.

Answer to 𝑅𝑄4

How should a test method comment be formulated to at-
tain a usable test generation fromGitHub Copilotwithout
the context of an existing test suite? A test method com-

ment should be formulated as a comment combining instructive

natural language with a code usage example to attain a usable

generation without the context of an existing test suite.

4 DISCUSSION
Within this section we discuss the implications of our findings for

three target groups: practitioners, researchers, and for the GitHub

Copilot system itself.

Implications for Practitioners. Practitioners invokingGitHubCopi-
lot (without modifying the method comment) in their software test-

ing efforts, will find themselves applying manual modifications to

GitHub Copilot’s generations, even when applying GitHub Copilot

within an existing test file with tests (see Answer to 𝑅𝑄1). In that

case, GitHub Copilot tends to mimic other tests for its generations

(see Observation II). Our findings suggest that invoking GitHub
Copilot with the intention of mimicking an existing test is
more likely to result in usable generation. Without any existing

test context, GitHub Copilot hardly provides any usable generation

(see Answer to 𝑅𝑄2). Nonetheless, practitioners can affect the gen-

erations by modifying the context. When you have an existing test

context, we observe that providing a code usage example within
the test method before invoking GitHub Copilot will yield
more usable generations (see Answer to 𝑅𝑄3). When there is no

existing test context, a method comment providing both a natural

language description and a usage example (Combined Comment)
will yield more usable generations (see Answer to 𝑅𝑄4). However,

in practice, a Usage Example Comment will provide similar re-

sults to a Combined Comment with less effort (because it takes

more time to formulate a Combined Comment).

Implications for Researchers. Previous research on test genera-

tion using LLMs demonstrated the value of including some form

of a test code example when prompting the model [5, 23]. Gener-

ations from GitHub Copilot mimic their surrounding test context

for its generations (see Observation II), essentially treating the sur-

rounding test context as test code examples. Without that context,

GitHub Copilot is unable to mimic and thus provides fewer us-

able generations (see Answer to 𝑅𝑄2). Furthermore, we find that

method comments containing a code usage example result in more

passing tests, independent of the test context (see Observation IV).

Hence, we hypothesize that test code examples are useful for
generating tests using LLMs.

Nonetheless, GitHub Copilot’s generations are often broken tests,

even when test code context is present (see Answer to 𝑅𝑄1). Broken

tests frequently contain runtime errors such as Unresolved Refer-

ences or Non-existent Attributes. In these cases, GitHub Copilot
is “hallucinating” references, object attributes, or alike; these
references or attributes do not actually exist. Hallucination is

a larger challenge within language generation models and refers

to generations that are “nonsensical or unfaithful to the provided

source content” [19]. Further research should investigate how these

hallucinations can be mitigated when generating tests.

Implications for GitHub Copilot. Our findings suggest thatGitHub
Copilot does not consider the code under test (CUT) when
generating tests (see Observation I). We hypothesize that Copilot

does not send the CUT as part of the prompt it uses for generating

its suggestion. Furthermore, while we do not know the exact model

which powers Copilot, we do know that the Codex model has lim-

ited context length (4096 tokens), and that Copilot uses a model

which descends from Codex [8]. Thus, we assume that it is not

possible to include all CUT as part of the prompt for any reasonably

sized project. One could modify the prompts of the GitHub
Copilot system such that it includes the relevant CUT, as
much as possible, whenever GitHub Copilot is invoked for
generating a test method. Such a system could, e.g., use static
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analysis to narrow down the relevant CUT based on code import-

s/references made in the direct test context, or possibly even the file

or method name, and then include the CUT as part of the prompt.

5 THREATS TO VALIDITY
Within this section we discuss the primary threats to validity.

Internal Threats. The formulations of the different method com-

ments are not unique for a given method. For example, every person

will likely write a (slightly) different Behavior-Driven Development

Comment for the same method. We partially mitigate this by ensur-

ing method comment formulations were independently formulated

by two contributors of this research. Finally, code aspect labels were

iteratively created by manual inspection of Copilot’s test genera-

tions. Despite careful labelling the labels are subject to human error.

This however likely does not impact the results and findings overall

as we investigated and labelled a large number of generations.

External Threats. While we have considered in total 290 test gen-

erations from GitHub Copilot, they all stem from 53 test methods

sourced from seven open-source projects. All the selected open-

source projects use the English language for their (code) documen-

tation, and are focused on a diverse, but limited set of domains. The

findings may not be generalizable to other domains. In addition,

including more projects (which would lead to more generations)

could strengthen the confidence of the findings presented. Further-

more, we focus on the Python programming language, and do not

include other programming languages as part of our analysis.

Threats to Reproducibility. Due to GitHub Copilot’s proprietary

closed-source nature, the LLM underlying Copilot may change in

the future. This can result in different code generations than those

documented and investigated in this research, in turn impacting the

reproducibility of the results. To mitigate this, we include all gener-

ations investigated in this study in our replication package [17].

6 RELATEDWORK
Siddiq et al. [25] investigate the Java test generation ability of

Codex [8], CodeGen [21], and OpenAI’s GPT-3.5 [9] LLM. They

construct varying prompt scenarios, e.g., containing the full code

of the class under test, with code comments, etc. They find that

across all models, numerous generated test were not compilable,

even after they employed rule-based repairs to fix these generated

test [25]. Overall, they find that the LLMs perform worse than

EvoSuite in terms of line and branch coverage, and number of

passing tests. Similarly, Bareiß et al. [5] investigate the Java test

generating ability of Codex [8], among other tasks. They generate

tests for 18 Java methods using a prompt for each method consisting

of helper functions, an example method with a respective test,

and the method under test. In particular, they find that Codex

achieves higher coverage than Randoop for the 18 Java methods.

Furthermore, they report that “suitable” examples are key for the

Codex model to make “effective predictions” [5]. Similar to Siddiq

et al. [25] and Bareiß et al. [5] we investigate the test generation

ability of a LLM; while they directly employ the Codex LLM for

their test generations, we use GitHub Copilot. Furthermore, Siddiq

et al. [25] investigate test smells in generations to assess their

quality, whereas we consider usability aspects.

Yuan et al. [29] investigates the test generation ability of Chat-

GPT, and develops ChatTester, an approach that uses prompt

refining (meaning that the prompt is automatically refined based

on whether the previous prompt generated a passing test) to re-

pair broken tests. The initial prompt includes the focal method

(CUT), relevant code imports, and a natural language description

instructing ChatGPT to generate a test for the focal method. They

find that nearly 42.1% of all tests generated by ChatGPT fail due

to compilation or execution errors. Our work differs in at least

two ways: (1) Yuan et al. [29] employ ChatGPT instead of GitHub

Copilot (which directly integrates in IDE) for test generations (2)

they use a form of prompt refining, whereas we only consider the

generation outputted by GitHub Copilot.

7 CONCLUSION
We investigated the usability of in total 290 tests generated by

GitHub Copilot in several scenarios: with- and without an existing

test suite, and with four different method comment strategies. We

have defined several usability aspects to investigate the generations.

Firstly, we find that 45.28% of test generated by Copilot within

an existing test code context are passing tests, containing no syntax

or runtime errors. The majority (54.72%) of generated tests within

an existing test code context are failing, broken, or empty tests. We

observe that tests generated within an existing test code context

often mimic existing test methods. In part due to this mimicking

effect, passing tests generated by Copilot within existing test code

context often cover the exact same branches as their human-written

counterpart, which indicates that these generations are suitable.

Secondly, we find that tests generated by Copilot without an ex-

isting test code context are less usable, with 92.45% test generations

failing, being broken, or empty tests. Only 7.55% of tests generated

without existing test code context were passing, and most of them

covered fewer branches than their human-written counterparts.

Additionally, we study how test method comments influence

the usability of test generations. We find that test method com-

ments using a code usage example produced the most usable test

generations when invoking Copilot within an existing test code

context. Without existing test code context, a comment combining

instructive natural language with a code usage example yielded the

most usable test generations.

Future work. We intend to investigate Copilot’s output in test

suites written in different programming languages. In particular,

statically typed programming languages might produce different

reasons for failing generations. Furthermore, a newly released blog

article
13

from GitHub states that newer versions of GitHub Copilot

consider other code files which are open in the IDE for its genera-

tions. Future research should consider how opening certain files in

the IDE impacts the usability of Copilot’s test generations.
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