
Incremental Just-In-Time Test Generation in
Lock-Step with Code Development

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Abstract—State-of-the-art test generation strategies employ ad-
vanced analyses of the code under test and powerful optimization
algorithms to generate automatic test cases for software systems.
As these techniques require a large amount of computational
power, they are often limited to generating tests after the code
under test is already written. However, today’s broad education
about the importance of software testing lets developers strive to
create test cases directly with new code they are contributing.

To support these developers, we want to develop an incre-
mental just-in-time test generation tool that works in close
proximity to the development of the code under test. Whenever
the developer creates a new class or functionality, the tool
automatically proposes a matching test case. When the developer
finishes implementing a new condition, the tool automatically
recommends an additional test case that tests the code which
was just added. The generated test cases are closely based on the
existing test cases in the project with small, incremental changes
to test the new lines of code.

To realize such a just-in-time test generation tool we have to
tackle many challenges: Detecting the completion of a test-worthy
condition, generating a fitting test case in a short time on the
developer’s machine, or effectively communicating the value of
the new test case to the developer. With the participants of the
SMILESENG Summer School we want discuss our new idea,
brainstorm on the challenges that this research opens up and
identify possible approaches to tackle them.

Index Terms—Software Testing, Automatic Test Generation,
Test-Guided Development, Developer-Centric Design

I. INTRODUCTION

To illustrate our idea of just-in-time test generation, let us
introduce this anecdotal use case: Think of Jada, a software
engineer in a large software development company. Her team
is working on an app for public transport trips and tickets. The
transport provider decided to introduce a new promotion: In
the summer months of 2022, each monthly pass will cost only
nine euros. Today, Jada’s task is to adapt the ticket selection
algorithm to propose the new ticket whenever the normal cost
of a trip would be more than nine euros. Jada opens the code
for the ticket selection component and adds a new condition
comparing the trip price to the promotional ticket price. After
finishing this new edge case, a notification pops up in the
corner of her editor:

“Do you want to add a test that a summer ticket is
proposed when it is cheaper than the normal fare?”

As their project policy requests all new code to be fully tested,
she is relieved to not have to write a test from scratch. She

This research was funded by the Dutch science foundation NWO through
the Vici “TestShift” grant (No. VI.C.182.032)

selects “Inspect Test” and the editor opens on the test class of
the ticket selection component. The new test is already added
to the source code and a green indicator shows her that the test
is passing. Jada reviews the new test case and is pleased that
here addition seems to work as she intended: An expensive
route—initialized just as in the other tests—is passed to the
selection, which then returns the summer ticket instead of the
normal ticket. She accepts the new test case and commits it
together with her changes. When creating the pull request, she
can be confident that all changes are already covered by the
test suite. And that mostly automated, thanks to the just-in-
time test generator!

This is one use case we envision for our new technology.
The just-in-time test generator closely follows the software
developer’s actions, identifies testable, test-worthy and fin-
ished scenarios, quickly generates matching test cases in the
background, and immediately presents these test cases to
the developer. The developer inspects the new test cases,
modifies them where they see fit and takes them over into
their maintained test suite.

Placing the test generation so close to the code development,
provides advantages in several known challenges of automatic
test generation:
• It narrows the search space by focusing the generation efforts

on the just modified code.
• It makes it easier for developers to understand the behavior

and coverage impact of the new test case, as they are still
in the mental context of the code under test [1].

• By generating the oracle through executing the just modified
code, the developer receives immediate feedback on the
actual behavior of their code and whether it matches with
the behavior they intended.

• This approach widens the application area of automatic test
generation to the initial development of code and directly
supports developers that aim to write test cases in conjunc-
tion with their production code (test-guided [2] or iterative
test-last development [3])

II. WHAT WE CAN BUILD UPON: RELATED WORK

The idea of just-in-time test generation is closely related test
suite augmentation [4]: adding new test cases to an existing
test suite in order to improve its code coverage. Code-to-test
traceability approaches [5], [6] can identify test cases that
execute code close to the just modified code and with the
help of symbolic execution and similar techniques we can



modify these base test cases to exercise the new scenario [7].
Powerful search-based test generation tools like EvoSuite [8]
are already able to generate whole test suites from scratch. To
apply them to just-in-time test generation, one would need to
investigate how existing test cases could be used effectively
as an initial population and how well the limited search space
can improve the runtime/generation quality towards interactive
performance. Test amplification [9] generates new test cases
by mutating the input stage of the test case and generating
assertions matching the new test behavior. In a previous study,
we investigated the interaction of software developers with
automated test amplification [1]. We saw that it is important to
give the developer control over the interaction, provide them
with the information necessary to judge the test cases and
effectively communicate the impact that the generated test case
will have on the quality of their test suite. Taking into account
the results of further user studies of test generation tools [10]–
[12], we conjecture that a strong focus on the design of the
user interaction is crucial for our just-in-time test generation
approach to be successful.

Machine learning approaches are gaining popularity also in
the area of automatic test generation, e.g. to generate assertion
statements [13], [14]. Recently, neural code completion tools
such as GitHub Copilot1 are able to propose fully fledged im-
plementations when triggered with a natural language method
name. Nonetheless, it remains to be investigated how effective
they are in generating useful test cases and which information
needs to be encoded in the trigger to steer the generation
towards the intended code under test.

III. DIVIDE AND CONQUER: STEPS TO TACKLE

On the way to fully-fledged just-in-time test generation we
see several challenges to be addressed. These could be the
basis for our discussion at the SMILESENG summer school,
together with the following questions:

Which further challenges do you see as part of realizing
just-in-time test generation?
What approaches should we explore to tackle them?
What chances or caveats do you see with these approaches?

• Cutting out a test-worthy condition / scenario as a target
for the test generation. Approaches could be detecting coher-
ent edits made by the developer, and learning from single-
concern commits or the coverage of existing test cases.
Together with the following test generation, this should be
a deterministic and transparent process to let the developer
build trust and understanding in the capabilities of our tool.

• Detecting the right moment to contact the developer
as well as giving them control to start and feed the tool
themselves.

• Rapid on-device generation to enable interactive coop-
eration between developer and tool. To speed up the test
generation, we propose to leverage incrementality: Building

1https://copilot.github.com/

upon existing test cases by modifying them only slightly. In
addition, we look at incremental compilation and building
to speed up a run of a test generation tool, as well as
explore ways to avoid the expensive executions of test cases
to measure adequacy metrics such as mutation score or
structural coverage.

IV. AN OUTLOOK INTO THE FUTURE

The possible applications of a just-in-time test generation
tool and its components will be much wider than just adding
test cases for new conditions in the code. We could propose
immediate updates to no-longer-passing test cases before the
developer reruns their tests after a change. We could determine
no longer needed test cases after large code cleanups and
propose suiting re-locations of test code after refactorings. In-
tegrating test generation right within the developer’s workflow
lets them become familiar with the advantages test generation
can offer and lets them gain trust in the capabilities of
(partially) automated software engineering.

While just-in-time test generation is still many steps away,
the development of each its subparts helps us strengthen and
better understand the area of automatic test generation and its
interaction with software developers. We are excited to present
our idea to the SMILESENG Summer School participants and
together discuss approaches to tackle it.

REFERENCES

[1] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, 2022.

[2] M. Beller et al., “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Softw. Eng., vol. 45, no. 3, 2019.

[3] A. Santos et al., “A family of experiments on test-driven development,”
Empir. Softw. Eng., vol. 26, no. 3, 2021.

[4] R. Bloem et al., “Automating test-suite augmentation,” in 2014 14th Int.
Conf. on Quality Softw. IEEE, 2014.

[5] N. Aljawabrah et al., “Understanding test-to-code traceability links: The
need for a better visualizing model,” in Computational Science and Its
Applications - 19th Int. Conf. Springer, 2019.

[6] B. V. Rompaey and S. Demeyer, “Establishing traceability links between
unit test cases and units under test,” in 13th European Conf. on Softw.
Maintenance and Reengineering. IEEE Computer Society, 2009.

[7] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: techniques and tradeoffs,” in 18th ACM SIGSOFT
Int. Symp. on Foundations of Softw. Eng. ACM, 2010.

[8] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation
for object-oriented software,” in m19th ACM SIGSOFT Symp. on the
Foundations of Softw. Eng. ACM, 2011.

[9] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: A study with ten mature open-source
projects,” Empir. Softw. Eng., vol. 24, no. 4, 2019.

[10] M. M. Almasi et al., “An industrial evaluation of unit test generation:
Finding real faults in a financial application,” in 39th Int. Conf. on Softw.
Eng.: Softw. Eng. in Practice. IEEE Computer Society, 2017.

[11] S. Panichella et al., “The impact of test case summaries on bug fixing
performance: An empirical investigation,” in 38th Int. Conf. on Softw.
Eng. ACM, 2016.

[12] J. M. Rojas et al., “Automated unit test generation during software
development: A controlled experiment and think-aloud observations,”
in 2015 Int. Symp. on Softw. Testing and Analysis. ACM, 2015.

[13] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” in 42nd Int.
Conf. on Softw. Eng. ACM, 2020.

[14] H. Yu et al., “Automated assertion generation via information retrieval
and its integration with deep learning,” in 42th Int. Conf. on Softw. Eng.,
2022.


