
Addressing Test Flakiness: Practical Approaches in a
Database-Reliant Industrial System

George Vegelien∗
georgevegelien@gmail.com

Delft University of Technology
The Netherlands

Carolin Brandt
c.e.brandt@tudelft.nl

Delft University of Technology
The Netherlands

Bas Graaf
bas.graaf@exact.com

Exact
The Netherlands

Arie van Deursen
arie.vandeursen@tudelft.nl

Delft University of Technology
The Netherlands

Abstract
Flaky tests—tests that pass or fail unpredictably even without code
changes—undermine the speed and trustworthiness of modern,
database-heavy software systems. This study investigates the un-
derlying causes of flakiness at Exact, a large-scale industrial system
in which shared database states and resource contention introduced
frequent test instability. By repeatedly rerunning the same com-
mit, we pinpointed recurring problem areas and implemented three
targeted solutions: (1) minimizing redundant background database
tasks, and two strategies for cleaning up “dirty” tests: (2) explic-
itly disposing of test data and (3) disabling polluting tests with a
database sanity check. Together, these interventions raised Exact’s
chance of a passing pipeline run from 27% to 95% and boosted
their monthly release rate from 60% to 96%. Our findings confirm
that rich, systematic measurement and well-prioritized fixes can
significantly reduce flakiness in industrial-scale software.

CCS Concepts
• Software and its engineering→Maintaining software; Soft-
ware testing and debugging.

Keywords
Flaky Tests, Measuring Flakiness, Software Testing, State Polluting
Tests, Database-reliant Systems, Industrial Software Development

ACM Reference Format:
George Vegelien, Carolin Brandt, Bas Graaf, and Arie van Deursen. 2026.
Addressing Test Flakiness: Practical Approaches in a Database-Reliant In-
dustrial System. In 2026 IEEE/ACM 48th International Conference on Software
Engineering (ICSE-SEIP ’26), April 12–18, 2026, Rio de Janeiro, Brazil. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3786583.3786891

∗Work done during a thesis internship at Exact

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE-SEIP ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2426-8/2026/04
https://doi.org/10.1145/3786583.3786891

1 Introduction
Flaky tests, i.e., tests that pass or fail without any actual change in
the code under test, have long been recognized as a significant chal-
lenge in software engineering [4, 8, 16]. They disrupt continuous
integration (CI) and continuous delivery pipelines by generating
false alarms and eroding developers’ trust in test outcomes [4, 5].
If left unaddressed, flakiness encourages the habit of repeatedly
rerunning tests instead of fixing the underlying issues, wasting sub-
stantial computational resources [18, 19] and further complicating
already fast-paced deployment cycles [13].

Despite notable efforts in academia and industry to address test
flakiness [22, 26, 28, 31, 32], this phenomenon persists, particularly
when tests rely on external resources such as databases [13, 16].
Database-reliant systems often involve complex schemas, large
amounts of shared data, and background maintenance tasks, all
of which increase the unpredictability of test behavior [13, 21].
One test may pollute the database by leaving behind modified
records, leading another test to fail without an obvious link to the
change in data. Another source of instability arises from system
tasks that run in parallel, causing state transitions or timeouts at
seemingly random intervals. These issues become especially acute
in industrial-scale systems with tens of thousands of tests, where a
single sporadic failure can block a release pipeline [4, 13, 17].

In this paper, we take a closer look at test flakiness within Exact1,
a multinational software company with over 2,000 employees, em-
powering more than 650,000 customers with its business solutions.
Their main product is a cloud-based software-as-a service business
application for a variety of applications, such as payroll or human
resource management. Built on the .NET platform, Exact heavily
relies on a robust database infrastructure, currently utilizing hun-
dreds of SQL databases, each containing upwards of 1,500 tables.
This makes Exact a relevant context to investigate database-driven
flakiness. Exact’s continuous integration pipeline runs upwards of
25,000 tests hundreds of times daily across multiple platforms, aim-
ing for frequent releases. Prior to our study, a considerable number
of builds failed even when failing test were retried up to three times;
most of these builds succeeded on a subsequent full pipeline re-
run, indicating that the underlying causes might be environmental
fluctuations rather than genuine product defects.

To investigate whether we can address test flakiness at Exact, we
adopt ameasurement-driven approach that repeatedly executes
1https://www.exact.com

https://orcid.org/0009-0000-2802-2437
https://orcid.org/0000-0001-7623-1970
https://orcid.org/0009-0004-4389-5737
https://orcid.org/ 
https://doi.org/10.1145/3786583.3786891
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786583.3786891
https://www.exact.com


ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Vegelien et al.

the industrial test suite on the same commit and configuration. By
gathering multiple pass/fail results for each test under identical con-
ditions, we pinpoint tests that exhibit unpredictable outcomes. This
process yields a granular view of both system-level flakiness (e.g.,
the likelihood that a given build will eventually pass all tests) and
individual test flakiness (e.g., pass rates across repeated attempts).
Drawing on insights from this aggregated data retrieved at Exact,
we then implement specific technical and organizational in-
terventions that reduce flakiness, such as minimizing redundant
background tasks, improving test data handling via explicit disposal,
and identifying or disabling “dirty” tests that pollute the database
state. Leveraging our measurement-driven approach, we quantify
the impact of our interventions on the test flakiness at Exact.
Finally, we report on the overall impact that our study of flakiness
had on the software at Exact and our understanding of flakiness
measurement.

By focusing on practical mitigation strategies and embedding
them within Exact’s existing release process, we arrive at cost-
effective interventions that can substantially reduce delays and
increase release confidence. While test-order dependency is known
to be one of the leading causes of flakiness [4, 9, 16], our results in-
dicate that database reliance can compound flakiness with environ-
mental factors such as external scheduling and resource contention,
further underlining the importance of specialized solutions.

Concretely, this paper contributes:

• A new way of measuring relevant flakiness in an industrial
system;

• Three automatic approaches to address flakiness in database-
reliant systems;

• Empirical evidence on the impact of measuring and address-
ing flakiness in the industrial context at Exact.

This study provides actionable insights for both practitioners
and researchers. These are deduced from our practical investiga-
tion into flakiness at Exact, and from the necessity to find the
dominant and most impactful flaky test root causes. We believe
the insights are not limited to Exact: our paper utilizes the sce-
nario at Exact to demonstrate the benefits of adjusting the common
conception regarding flakiness. In particular, we show that test flak-
iness in a database-heavy industrial system is not merely an issue
of faulty test code or test order randomness. Instead, flakiness
often emerges from the interplay between infrastructure,
shared state, and environmental variability. Thus, we recom-
mend quantifying flakiness using meaningful metrics, aggregating
test results to find recurring patterns, and adopting nuanced flak-
iness labels rather than binary classifications. We stress the need
to define acceptable test pollution boundaries to better identify
and fix disruptive tests. Furthermore, for the research community,
we call for a distinction between impactful and negligible flak-
iness and urge that benchmarks be run on realistic, production-like
environments to ensure meaningful conclusions. These insights are
grounded in over a year of production data and multiple targeted
interventions.

In the following, we provide an overview of the background on
flakiness and its known root causes (Section 2), then describe our
measurement-driven approach (Section 3) and highlight the ratio-
nale behind each proposed intervention (Section 4). We present

our results in terms of improved stability (fewer spurious CI fail-
ures) and quantifiable savings in developer time (Section 5). Our
discussion demonstrates that large gains can be realized once an
organization has clear visibility into how, when, and why flakiness
occurs (Section 6). By combining automated detection and targeted
fixes, our study aims to offer both researchers and practitioners
a structured pathway for tackling flaky tests in database-centric
industrial contexts.

2 Background and Related Work
2.1 Industry Context at Exact
Exact operates a large-scale automated test suite consisting of over
25,000 API and Integration tests, written in C# and VB.NET as well
as Gherkin for selected scenarios2. The tests are executed on a
hybrid infrastructure: Part of the test runs are executed on Exact’s
self-managed Azure DevOps agents hosted in private datacenters,
while the load peaks are distributed to AWS agents in the cloud.
All tests are executed during every Feature Regression Test (FRT)
and Release Regression Test (RRT). There is no test selection based
on code changes. Parallelization is achieved by distributing tests in
chunks with a first-come-first-serve queue based system distributed
over 2–5 virtual machines per stage, each with its own dedicated
database instance templated to resemble production environments.
To ensure isolation, tests are run sequentially per virtual machine,
and database templates are populated with multiple user archetype
instances to prevent data collisions and minimize test setup costs.

To mitigate the impact of flaky tests, Exact applies a strict
3-Attempt Retry Strategy. Each test starts with a first attempt. If
it fails, the test is re-queued and executed up to two more times.
If any of the three attempts passes, the test is labeled Passed on
Retry. Otherwise, it is marked as Failed. This retry mechanism is
applied consistently across both feature (FRT) and release (RRT)
pipelines. FRTs are triggered on code merge requests and executed
with standard resources. RRTs are run multiple times per day on
higher-capacity infrastructure.

The RRT outcomes determine which builds are eligible for daily
4:00 a.m. production releases. This system ensures high release
frequency while tolerating transient test failures that would other-
wise slow down development. Nevertheless, flaky tests in a release
regression test can block moving a build to production, leading to
rework in examining the cause and delayed deployment of valuable
functionality. It is the objective of this paper to identify ways to
mitigate these undesired effects of flaky tests.

2.2 Related Work
Over the last decade test flakiness has become a well-documented
impediment to reliable continuous integration and delivery. System-
atic reviews identify four recurrent triggers: test-order dependency,
test data pollution, resource contention, and environment variabil-
ity [22, 26, 31].

Order dependency—the tendency of a test to pass or fail depending
on the sequence in which it is executed—can be NP-hard to expose
and is estimated to account for 8–60% of all flaky failures, with
higher prevalence in dynamically typed languages [9, 14, 30].

2https://cucumber.io/docs/gherkin/

https://cucumber.io/docs/gherkin/


Addressing Test Flakiness: Practical Approaches in a Database-Reliant Industrial System ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Test data pollution denotes any residual state left behind by one
test that influences subsequent tests; polluted database records
or global configuration flags have been shown to undermine CI
reliability in industrial studies by Bell, Marinov and others [11, 15,
21]. In our study, the flakiness interventions described in Section 4.2
consider test data pollution and through this indirectly test order-
dependency.

Resource contention encompasses concurrency issues such as
thread scheduling, network latency or database locks. Lam et al.
demonstrated that seemingly harmless shifts in computational re-
sources can alter failure rates in otherwise deterministic code [25].

Lastly, environment variability refers to differences in hardware,
operating-system version or virtualisation layer that surface non-
deterministic behaviour only in specific configurations, a problem
repeatedly observed at large providers such as Google, Mozilla
and others [4, 13, 19, 21]. Our intervention in Section 4.1 targets re-
source contention, and throughout the whole study we also observe
an impact of execution environment changes on flakiness.

Detecting flakiness typically relies on controlled reruns, static
or dynamic heuristics, or a combination thereof. Frameworks such
as iDFlakies and iPFlakies repeatedly execute suites under shuffled
orders to reveal order-dependent failures [14, 29]. Google’s internal
entropy-based flakiness score depends on many reruns but scales
to millions of tests in nightly infrastructures [12, 19]. In contrast,
learning-based tools including FlakeFlagger, DeFlaker and NonDex
attempt to predict or provoke flakes without exhaustive repetition,
exploiting change coverage, stack traces or non-deterministic API
stubs [1, 3, 10]. While reruns give statistically sound pass-rate es-
timates, they are computationally expensive. Tools working with
learned heuristics trade accuracy for speed. For our case at Exact,
precise measurement of system-relevant flakiness was crucial. This
is why we apply a rerun-based approach.

Typically, there are three lines of attack to reduce flakiness. First,
many organisations retry or quarantine failing tests, an expedi-
ent practice that masks deeper defects and escalates infrastructure
cost [19, 21]. Second, automated transformations—exemplified by
iFixFlakies—rewrite tests or reorder statements to break hidden
dependencies [24]. Third, resource isolation through containers
or in-memory databases eliminates interference at the price of
replicating complex production schemas [2, 6, 7, 20]. To date, com-
paratively little research examines how background maintenance
tasks in enterprise databases interact with these strategies; Lam et
al.’s RootFinder remains one of the few studies in this space [13].

The evidence from industrial reports underscores the economic
stakes of combatting flakiness. Case studies at Google, Apple, Face-
book, Ericsson and Mozilla attribute release delays, costly reruns
and developer frustration directly to flaky pipelines [12, 19, 23].
Yet, most published datasets centre on unit-heavy Java projects
or mobile UI suites. Database-centric back-ends with large shared
schemas and background jobs are under-represented, leaving open
questions about the relative contribution of resource contention
and data pollution in such environments.

Gap addressed. Our study extends the empirical knowledge
on test flakiness by analyzing approximately 25,000 API and inte-
gration tests in a production .NET/SQL stack at Exact. We show
that redundant background database tasks and cross-test data pol-
lution are dominant triggers: by rerunning identical commits on

production hardware we narrow down actual flakiness, including
environment-induced failures. We then apply lightweight counter-
measures including task suppression (Section 4.1) as well as explicit
disposal and sanity checks (row-count and configuration-hash, Sec-
tion 4.2). The resulting stability gains demonstrate the value of
database-specific interventions in large industrial CI pipelines.

3 Measuring Flakiness
We propose a measuring regime for test flakiness that helps the
development team identify and address the most critical instances
of flakiness, and assess the progress over time in reducing test
flakiness.

Our starting point is that we measure flakiness by repeatedly
rerunning the full test suite for a given commit. This yields a focus
on flakiness caused not by change, but by environmental factors
or hidden state changes as they might happen in database-centric
systems.

3.1 Pipeline Pass Probability
Key concepts for our metric, called the Flaky Pipepline Pass
Probability, are shown in Figure 1.

Each individual execution of a test method is called a test at-
tempt. A test is allowed up to three attempts: the initial run and
up to two retries if it fails. These attempts together form a test
run, which passes as soon as an attempt succeeds. A pipeline run
consists of thousands of such test runs executed in parallel. The
pipeline passes only if all test runs pass. The pass rate of a test is
defined as the fraction of test attempts that pass.

A benchmark run refers to a collection of pipeline runs exe-
cuted on the same code version (same commit), used to evaluate
the stability and flakiness of tests under controlled conditions. The
Flaky Pipeline Pass Probability (FPPP) is computed as the per-
centage of pipelines within a benchmark that pass. In Figure 1, the
full pipeline is run three times on the same benchmark commit.
Two out of these three pipepline runs have only passing tests after
up to three attempts, but the third has test runs where all three
attempts fail, leading to an FPPP of 66%.

Clearly, higher pass rates are preferable, as they provide more
stability and confidence. As we will see, thanks to targeted inter-
ventions, over a period of months the FPPP at Exact climbed from
27% to 96%.

3.2 Periodic Error Grouping
To support the identification of flakiness causes and potential inter-
ventions to resolve such causes, we periodically (around once per
month) conduct a pipeline analysis with a focus on the errors its
failures produce.

Here again, we run the entire test suite multiple times on a sin-
gle commit (typically around 30 times), on infrastructure that is as
close as possible to Exact’s production environment. We then log
each pass/fail attempt along with its error messages and systemati-
cally group these messages using string and stack-trace similarities.
This manual clustering helps us to detect patterns beyond isolated
failures. For example, a large number of timeouts could indicate
systemic resource contention, while repeated “access denied” errors
suggest misconfigured authentication or permissions. By mapping



ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Vegelien et al.

Figure 1: Definitions of test attempt, test run, pipeline run, and flaky test, illustrating the 3-attempt policy and Flaky Pipeline
Pass Probability (FPPP).

recurring error signatures to specific code paths or subsystems,
we gain early insights into which segments of the platform dis-
proportionately contribute to flakiness. This analysis, conducted
together with Exact engineers, has pointed us to the causes and
interventions covered in Sections 4.

3.3 Sporadic Flakiness
To be able to prioritize the most urgent causes of flakiness, we
distinguish between sporadic and frequent flaky tests. We refer to a
flaky test case that fails in less than 10% of the runs as sporadic
flakiness, while a flaky test that fails in more than 10% of the runs
as frequent flakiness.

Our assumption is that sporadic flakiness may be related to
transient effects such as minor race conditions or infrastructure
failures. A cost-effective solution mitigation may be test re-runs or
short-term refinements (like short extra timeouts).

Frequent flakiness, by contrast, may point to deeper structural
issues such as ongoing database background tasks or improperly
handled data states. These warrant extra investigation, and may
necessitate more substantial changes to the database configuration
or test logic. The interventions proposed in this paper address such
frequent flakiness.

4 Addressing Flakiness
Measuring test flakiness (Section 3) and grouping based on flaky
error signatures provides a foundation for spotting unstable areas.

Our data revealed two dominant contributors in a database-
dependent context: excessive background tasks and polluted
test data. Together, these two root causes explained 62% of all
pipeline-blocking failures (40% and 22% respectively), i.e., failing
Release Regression Tests (Section 2.1) that blocked release to pro-
duction. Together, these root causes were responsible for a Flaky
Pipeline Pass Probability that was as low as 27%. Although other

forms of flakiness appeared (including timing issues and race con-
ditions), these two categories accounted for the majority of test
failures observed in repeated runs.

Below we describe targeted flakiness interventions that address
these root causes: minimizing background tasks and addressing
test poulltion through explicit disposal and database sanity checks.

4.1 Minimizing Database Background Tasks
Our first flakiness intervention reduces the automated background
behaviour during tests by modifying the database configuration
and its data. Background tasks—such as scheduled clean-ups or
watchers—were present at Exact because the team historically du-
plicated the entire production environment inside every transient
test database. Since the database exists only temporarily for the du-
ration of the test run, these background tasks add overhead without
functional value. By reevaluating the test database configuration,
we isolate the testing environment from incidental slowdowns or
data inconsistencies. Our hypothesis is that fewer concurrent data-
base operations lead to more deterministic test outcomes, especially
for frequent flaky tests that exhibit high failure rates.

4.2 Addressing Test Pollution
To reduce test pollution, we adopted a proactive and a reactive
strategy: The proactive intervention introduces explicit disposal:
our WeDispose refactoring inserts deterministic dispose() calls
to dispose of created test data within a test. We used static analysis
to identify and refactor all tests that did not dispose of their test
data. Figure 2 illustrates howwe explicitly disposed of variables and
how not disposing can lead to other tests failing. This practice of
disposing of the test data is expected by Exact’s internal framework
culture, but not formally enforced.

In the reactive approach, we identified existing polluting tests by
running a series of database sanity checks at two levels: A row-count
check and a configuration-hash check. These checks compared the
database state before and after execution of each test, surfacing



Addressing Test Flakiness: Practical Approaches in a Database-Reliant Industrial System ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

// Reuses live connection to increase performance.

Connection conn; \\ IDisposable

public void activateConnection () {

if (conn is null) {

conn = new dBConnection ();

}

if (conn.isActive) return;

conn.poolConnections ();

conn.start ();

}

[TestMethod]

public void TestA()

{

conn = new MockConnectionForTestA (...);

...
+ conn.dispose ();
}

[TestMethod]

public void TestB()

{

activateConnection ();

:
//

:::
Test

::::
will

:::
fail

:::
if

::::
still

::::
using

:::
mock

::::
conn

::
of

:::::
testA,

:
//

:::
i.e.

::::
when

::::::
executed

::::
after

:::::
testA

:::::
without

:::::::::::
conn.dispose().

...

}

Figure 2: Adjusting TestA by adding a dispose to make sure
TestB will not fail.

inconsistencies or residual data that could affect subsequent tests.
Both checks are implemented as shown in Figure 3, by injecting a
saveState method before each test and a compareState method
after it. The specific implementation of these methods differs de-
pending on whether the row-count or configuration-hash check
is used. While the row-count check widely targets all data, the
configuration-hash check was developed together with Exact’s en-
gineers. It focuses on specific tables that they identified as relevant
for basically all operations, so likely modified by a test and im-
pacting another test if not correctly set. To measure the flakiness
impact, we then disabled all tests that were flagged as polluting by
the sanity checks in one full test suite run.

5 Results
We deployed each of the interventions from Section 4 iteratively at
Exact and tracked the impact using our measurement protocols out-
lined in Section 3. This section details how flakiness rates changed
after the interventions were put in place. Concretely, we address
the following research questions:

RQ1: What is the impact of measuring on test flakiness at Ex-
act?

RQ2: How does minimizing DB background tasks impact test
flakiness at Exact?

RQ3: How does addressing test pollution impact flakiness at
Exact?

[TestInitialize]

public override void TestInitialize ()

{

// Saves the current DB row counts/hashed settings

+ SanityCheck.saveState ();

base.TestInitialize ();

...

}

[TestCleanup]

public override void TestCleanup ()

{

...

base.TestCleanup ();

// Compares the saved values to the current ones

+ SanityCheck.compareState ();

}

Figure 3: Adding database sanity checks to test setup and
teardown.

RQ1 quantifies our baseline by asking whether measurement
alone changes developer behaviour; RQ2 isolates concurrency ef-
fects from background tasks; and RQ3 focuses on cross-test data
contamination revealed by our two sanity checks.

To address these questions, over a period of nine months, we
measured flakiness at Exact and iteratively deployed our interven-
tions. The results are presented below.

5.1 (RQ1) Flakiness Patterns and Improvements
Over Time

To understand the prevalance and trends of flakiness, we conducted
a series of flakiness measurements. Each measurement consisted
of 26 to 32 reruns of all tests for the same commit, on Exact’s
production test hardware.

Sporadic vs. Frequent Flaky Failures. Figure 4 shows the preva-
lence of flaky failures in ten bins of 10% pass rate each. The figure
distinguishes failed tests (which lead to three failures in a row after
three retries, orange in the figure) from flaky tests (which have one
failure but which end up in a pass after one or two retries, blue in
the figure):
• The sporadic bin of (0.9,1) is the largest, being responsible for
74.9% of the flaky tests. They lead, however, only to 27.5% of
the failed tests that blocked a pipeline: As they are sporadic, a
retry often resolves the issue.

• The remaining nine frequent (non-sporadic) bins, by contrast,
total to only 25.1% flaky tests, but they cause 72.5% of the failing
test attempts. This, in turn, results in 69% of all pipeline failures.
Clearly, retrying here does not help.
Making these percentages available to the Exact developers in-

spired them to investigate the underlying causes. A substantial
fraction of the sporadic failures resulted from external infrastruc-
ture factors, such as offline services or resource contention across
virtual machines. Changes to the test platform also caused instabil-
ity in some tests (e.g., differing configuration or hardware setups),



ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Vegelien et al.

Figure 4: Distribution of failing (causing at least one pipeline run to fail through three failed attempts) and flaky tests (with
at least one failing attempt over the whole benchmark) per pass rate interval for all gathered benchmarks. This shows that
considering tests falling under non-sporadic flakiness (<= 0.9 pass rate), are much more likely to actually lead to pipeline
failures.

Figure 5: Flaky tests for 26 pipelines in six different cate-
gories, with halfway a switch in infrastructure affecting flak-
iness.

occasionally affecting random subsets of tests as well as a specific
subset linked to hardware dependencies. By contrast, frequent (non-
sporadic) failures trace back to persistent problems, within the code
or within database configurations.

Another perspective on sporadic versus frequent flaky failures
is shown in Figure 5. Here test failures are grouped into six cate-
gories obtained through manual analysis of the flaky tests, such as
recurring issues related to timeouts, incorrect customer IDs, or the
initialization of the SpecFlow engine (for Gherkin-based tests). The
figure shows a total of 26 pipelines, with halfway a switch in hard-
ware. On dedicated hardware (runs 1–13), the mix of failure types
is broadly similar from run to run. However, a noticeable bump of
approximately fifteen extra SpecFlow Assembly Init errors appears
in run 4. When the same tests move to AWS (runs 14–26), the base
distribution persists, but a constant block of additional SpecFlow
Assembly Init failures now appears in every pipeline. Again, one
run (no. 18) experiences an isolated spike of extra Timeout and Lock
Request errors. The consistent distribution of failures on most runs
represents the non-sporadic failures, while the outliers in runs 4
and 8 point to sporadic failures.

Together, Figures 4 and 5 underscore why this distinction be-
tween both groups matters: non-sporadic tests dominate long-term

Figure 6: Flaky tests at Exact over time, gathered from base-
line benchmark runs. Note: FPPP represent how often both
the API and Integration test stage passes when rerun on the
same release with the same configuration.

risk, while sporadic, environment-driven bursts can suddenly in-
flate failure counts and conceal deeper issues.

Gradual Improvement in Pipeline Stability. Figure 6 tracks the
Flaky Pipeline Pass Probability (FPPP) over the duration of our
study. At each data point we shared flakiness reports with the com-
pany. The vertical box plots compare “Flaky Tests Showing” (the
number of tests failing at least once) against “Failed Attempts” (all
individual failed attempts) per pipeline run. This indicates how
many tests are flaky per pipeline on average. The difference be-
tween the boxplots indicates how many fail on second and third
attempts as well. In terms of FPPP, the beginning is marked by
a pronounced increase from the 27% of pipeline pass probability
following the initial reporting of flakiness and flaky tests on June 6.
Initially, a notable gap existed between flaky tests and failed at-
tempts, indicating tests that repeatedly failed within the same run.
By June 30, the difference largely disappeared, showing a decrease
in repeatedly failing test attempts. However, after October 10, a
new hardware environment in AWS coincided with an uptick in
both sporadic and repeated failures. The FPPP remained high over
the later phases of our study, up to 96% on the last measurement
on November 4. However, the later data showed the discrepancy



Addressing Test Flakiness: Practical Approaches in a Database-Reliant Industrial System ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Figure 7: The average distribution of flaky tests observed
within RQ 2 flaky-test benchmarks, categorized based on
error messages and failure types. Note: A single flaky test
may be classified under multiple categories if it exhibits
error messages that fall under multiple categories or if it
experiences multiple failed attempts with different error
messages.

between “Flaky Tests Showing” and “Failed Attempts” gradually
widening, suggesting a possible future decline in pipeline reliability
if left unaddressed. This widening coincided with less frequent
sharing of flakiness reports.

Release Rate Improvements. In addition to raising the FPPP, Ex-
act’s monthly release rate increased considerably after attention
turned to mitigating flaky tests. In May prior to our study, the per-
centage of targeted release days at which a successful release took
place—which we will call the successful release rate—had dipped to a
low of 60%. After we started sharing flakiness reports, the successful
release rate rose to 95% for three consecutive months beginning in
July. Company metrics suggest this outcome was partly attributable
to the same-commit benchmark reports, which enabled developers
to identify and fix the most problematic tests before they triggered
repeated release-blocking failures. Although new flaky tests con-
tinued to appear, many now passed on subsequent attempts within
the same pipeline run and thus posed fewer immediate obstacles to
successful deployments.

Findings for RQ1: What is the impact of measuring on
test flakiness at Exact?
Repeated same-commit benchmarks uncovered that one quar-
ter of the flaky tests (the non-sporadic cluster) caused nearly
70% of pipeline failures. Sharing these measurements motivated
focused efforts within Exact to address flakiness.

5.2 (RQ2) Raising Test Stability by Suppressing
DB Background Tasks

Figure 7 shows a distribution of flaky tests over nine categories,
which emerged from discussions with Exact engineers. Investiga-
tion of the “User Not Active” category revealed a potential connec-
tion with background database tasks, leading to the intervention
described in Section 4.1.

The blue bars indicate prevalance of the categories before ap-
plying the intervention; the orange bar the prevalence after. The
“User Not Active” category completely disappeared, and the “Value
Null” category was substantially reduced. Overall, this intervention
yielded a 1.6-fold improvement in the Flaky Pipeline Pass Probabil-
ity (FPPP), from 27% to 44%, and lowered the median count of flaky
tests per pipeline by about 40%.

A closer breakdown of test-level pass rates indicates that 60 of
the original 115 non-sporadic flaky tests (pass rate < 0.9) now pass
consistently. Most of these previously failed with one of the highest-
frequency failure categories that hinted at resource contention.
Ten new tests became non-sporadically flaky. Manual debugging
revealed that these failures were attributable to test data pollution
instead of a dependency on the background tasks that weminimized
with the intervention. Finally, 41 of the 115 non-sporadic flaky
tests remained unchanged. No direct adverse consequences (e.g.,
undersimulation of production) were observed, suggesting that
removing unnecessary background operations can reliably improve
stability in database-centric test environments.

Findings for RQ2: How does minimizing DB background
tasks impact test flakiness at Exact?
Disabling redundant background tasks eliminated two high-
frequency error categories (“User Not Active” and “Value Null”),
fixed 60 of the 115 non-sporadic flaky tests, and produced a 1.6x
improvement in FPPP without observed negative side-effects
on functional representativeness of the test suite.

5.3 (RQ3) Addressing Test Pollution
Our final research question addresses the impact of the interven-
tions aimed at addressing pollution, as laid out in Section 4.2: (1)
adding missing explicit disposal of test data, and (2) detecting and
disabling tests that pollute shared database state. Both approaches
reduced certain forms of flakiness, but also uncovered new brittle
dependencies.

Explicitly Disposing Data. Our static analysis-powered refactor-
ing introduced explicit dispose() calls in 5,064 tests, revealing that
over 20% of the entire 25k integration and API test corpus created
test objects that were not properly cleaned up. Our measurements
indicated that by explicitly disposing, only 5 frequently failing tests
stopped exhibiting flakiness. After manual inspection, we could
not identify root causes for their flakiness. No explicit dispose calls
were added within their test class. This indicates that their flaki-
ness likely stemmed from leftover open connections or database
pollution.

On top of this some new, now consistent test failures emerged.
In particular, 27 brittle tests [24] began failing consistently, as they
relied on other tests to establish necessary data. This also included



ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Vegelien et al.

inter-assembly coupling, where a disposable object was removed
in a different class, leading to missing data or incomplete setups
triggering consistent test failures.

Database Sanity Checks (Dirty Tests). Our two sanity checks—
a general row-count monitor and the specialized configuration-
hash check—flagged 11.43% of tests as modifying the database state
without restoring it. Disabling these flagged tests lead to 28% of
the non-sporadically flaky tests no longer being flaky. Disabling
these flagged tests entirely prevented 11 previously non-sporadic
failures but caused 5 always-passing tests to fail, indicating that
those tests depended on leftover data from the removed polluting
tests. Moreover, 2 tests became newly flaky for reasons unrelated
to the disabled dirty tests, likely due to altered execution order.
Although the generalized check identified more polluting tests than
the specialized approach, the specialized check was more successful
in reducing overall flakiness [27].

Findings for RQ3: How does addressing test pollution im-
pact flakiness at Exact?
Both strategies, explicitly disposing test data and disabling
database-polluting tests, underscore how hidden dependencies
and data pollution can undermine test reliability. While the
strategies each fixed some flaky behaviors, they also revealed
brittle tests relying on shared state or inconsistent setup. In
sum, test pollution in this large database-reliant system was
significant yet nuanced, requiring targeted remediation that
can inadvertently expose other dependencies if not carefully
managed.

6 Discussion
In this section we discuss our overall findings and impressions
from our nine month study investigating and tackling flakiness at
Exact with targeted interventions. We note key limitations of our
results and point to the next necessary steps for industrial flakiness
research. Our takeaways focus on two main themes: the inherently
multifaceted, combinatorial nature of flakiness in an industrial
context and the importance of rich, aggregated information for
effectively combating flakiness.

6.1 A Handful of Tests Drive Pipeline
Instability.

Our measurement-driven approach revealed that a small subset of
frequently failing tests caused a disproportionate share of pipeline
disruptions. These “non-sporadic” flaky tests tended to arise from
diverse causes, such as database background tasks, test pollution,
or environment-dependent behavior. Moreover, many flakiness
issues surfaced only when multiple problems co-occurred—e.g.,
one test leaving behind partially updated data, another relying on
that data, and a background routine contending for resources. In
several cases, making a “fix” in one area (like disposing of test
objects more aggressively) inadvertently revealed or exacerbated a
different dependency. This interplay underscores that flakiness is
best understood as a multifaceted phenomenon: tests may fail non-
deterministically for a variety of reasons, and seemingly unrelated
changes can trigger new failures or expose hidden brittleness.

Furthermore, our benchmarks confirmed that flakiness exhibits
differently across test suites and environments. Integration and API
test had various different causes for flakiness, and while they where
often related to subtle concurrency or database-related issues, they
stemmed from various reasons and exhibited differently. Similarly,
the use of AWS hardware versus dedicated internal machines cre-
ated varying performance and timing conditions that amplified
some classes of flakiness while reducing others. These observations
reinforce that flakiness rarely has a one-size-fits-all solution; rather,
teams must measure the flakiness in their system, adapt their strate-
gies to the particular stage (UI vs. API vs. integration), environment
(cloud vs. on-prem), or test design.

6.2 Aggregated Metrics Accelerate High-Impact
Flakiness Mitigations.

A central takeaway for us from this study with Exact is that pre-
senting flakiness data in granular and summarized forms helped
both developers and management to act on the issues. High-level
overviews (e.g., error categories and pass rates) exposed systemic
faults—such as entire assemblies prone to “User Not Active” errors—
rather than scattering them across many individual tickets. Once
teams realized that, for instance, 40% of failures linked to a single
background database routine, they quickly recognized the urgency
of disabling it in the transient test database. Similarly, quantifi-
able metrics like the Flaky Pipeline Pass Probability (FPPP) made
the problem’s business impact visible to management, motivating
resource allocation for deeper fixes. Without these aggregated in-
sights, flakiness would likely persist in sporadic or uncorrelated
bug reports, hampering targeted interventions.

At the same time, we observed an over-reliance on a blanket
“flaky test” label, which can dilute the meaningful distinction be-
tween genuinely fragile tests and failures caused by rare or one-off
events. A single pass/fail marker may mislead developers into ig-
noring infrequent but high-impact problems, or into quarantining
valid tests due to incorrectly attributing them to “flakiness.” This
is why we opted to distinguish sporadic and the higher-priority
non-sporadic flakiness. These findings align with prior industry
observations [12] that some form of continuous scoring or historical
flakiness measurement is more appropriate than a purely binary
label, especially for large, long-lived systems. By monitoring pass
rates, pipeline outcomes, and error messages over time, teams can
distinguish severe, recurring flaky behaviors from sporadic or incon-
sequential failures and thus deploy their resources more effectively.

6.3 Recommendations and Implications
Based on our findings, we can make the following recommenda-
tions, to engineering teams, tool vendors, and academic researchers.

Recommendations for Practitioners. From our findings, we sug-
gest that engineering teams:

• Quantify flakiness through clear metrics such as pass rates
and FPPP. Showcasing which test are flaky and how flakiness
affects build and release success helps align both developers
and management.



Addressing Test Flakiness: Practical Approaches in a Database-Reliant Industrial System ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

• Aggregate test results to spot patterns, rather than investi-
gating each failure in isolation. This uncovers root causes
that may span multiple tests or assemblies.

• Recognize environment-specific behaviors, as flakiness
can look very different in on-premise environments versus
cloud-based ones.

• Use continuous or gradual labeling rather than a
strict “flaky vs. non-flaky” dichotomy. Gradual scoring or
recurrence-based categories help distinguish consistently
disruptive tests from minor one-off issues.

• Explicitly define which tests pollution is allowed. Not
all flaky tests indicate a problem with the test itself, nor do
dirty tests always cause other tests to become flaky. Clean-
ing up this pollution then becomes a tradeoff. Teams should
explicitly define acceptable versus unacceptable test pollu-
tion within their test suites. Establishing clear guidelines
helps developers to adjust their tests accordingly allowing
tools and developers to identify genuinely problematic tests
(offending tests), facilitate automatic targeted fixes and will
ultimately reduce wasted effort spent investigating falsely
labeled flaky tests.

Recommendations for Tool Vendors and Builders. Some of the
lessons learned from our study have implications not just for teams
managing their test suites, but also for tool builders and vendors
trying to help such teams.

Effectively addressing test flakiness requires not only automated
metrics, but also developer interpretation and domain knowledge.
Many of the techniques in this study depend on context-specific
understanding—such as context clues for common flakiness reasons
of test pollution or environment-related behavior—that cannot be
resolved by automation alone. Making flaky test data directly visible
within CI platforms allows teams to apply this domain knowledge
where it matters. The aggregation methods and metrics used in this
study are broadly applicable and can be generalized across CI/CD
systems. If integrated into existing toolchains, they could empower
teams across the industry to detect, interpret, and act on flakiness
more effectively. Based on what proved most useful at Exact, we
suggest the following functionality:

• CI platforms such as Azure DevOps, GitHub Actions, and
GitLab CI should offer native flaky test observability, in-
cluding keymetrics such as per-test pass rates, Flaky Pipeline
Pass Probability (FPPP), and retry-aware flakiness scores,
making instability measurable by default.

• Flakiness data should be automatically aggregated and
visualized across benchmark runs, environments, and test
agents, enabling teams to prioritize consistently disruptive
tests and monitor instability trends over time.

Recommendations for Academics. Lastly, the research community
has expressed a strong interest in investigating flakiness, as covered
in Section 2. Based on our findings, we suggest the following:

• Distinguish “useful” flakiness. Treat a test that fails once
in 10,000 runs very differently from one that fails every other
day; Research and engineering effort is spent more wisely
spent on the latter than on the former.

• Benchmarkflakiness in production-like environments.
Attempting to reproduce flaky behavior on synthetic se-
tups or reordered test sequences often yields misleading
results. Instead, rerun benchmarks should be performed on
production-like infrastructure with realistic resource con-
straints and test orderings to capture the true conditions
under which flakiness occurs.

Overall, our findings illustrate that flakiness in a database-reliant
industrial setting is neither a simple “”bug in the test” nor a purely
external phenomenon. Its root causes are often combinational and
can shift as tests, platforms, and production-like conditions evolve.

6.4 Threats to Validity
We identify the following threats to validity.

Internal validity.Our same-commit rerun benchmarksmeasure
flakiness at a single revision; unseen code changes betweenmonthly
runs might silently introduce or mask flaky behaviour.

Construct validity. Error-message grouping relies on manually
curated patterns; some root causes may therefore be under- or
over-represented. The FPPP captures build-level stability but not
developer frustration or time-to-fix.

External validity. Exact’s database-heavy architecture and five-
agent test fan-out may differ significantly from other organisations.
Our results may generalize only to pipelines with comparable data
volumes and background-task footprints.

Reliability.We repeated multiple pipeline runs over a day for
each benchmark on production test hardware to curb incidental
noise, yet sporadic infrastructure failures (e.g. transient cloud out-
ages) can still influence individual data points.

Data availability. As this research is conducted in an industrial
context, the underlying data and code cannot be made available
openly.

6.5 Limitations and Future Directions
While our rerun-based data collection isolates flakiness at a particu-
lar code state, it may not capture ongoing changes in the codebase
or environment. Large industrial codebases often undergo many
changes within a short time-frame. In addition, repeated pipeline
executions require significant computational overhead; organiza-
tions with extremely high release frequencies may instead choose
to rely on partial reruns or historical time-series data. Another
limitation is that our manually defined error-type categories, while
effective at capturing local patterns, might not generalize without
adaptation to other projects.

Looking ahead, future work could explore more granular or au-
tomated grouping of flaky tests using natural-language processing
and stack-trace mining—e.g., to unify error messages that vary in de-
tail but reflect the same underlying root cause. Another promising
direction would be to integrate same-commit reruns with time-
series flakiness scores, capturing both snapshot and historical per-
spectives. Furthermore, more research can be done regarding differ-
ent test layers (UI vs. integration vs. unit) and how diverse hardware
environments impact flakiness, which could help refine how best to
prioritize and fix flakiness under varying conditions. Finally, future
work could investigate the long-term effect of flaky test reports on
software health, development speed, and test flakiness, since we



ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil Vegelien et al.

have seen many great improvements over only a shorter time-frame
of a couple of months.

7 Conclusion
This study has shown that flaky tests are not mere technical nui-
sances; they systematically disrupt pipelines, erode developer confi-
dence, and can substantially raise the cost of software development.
To address these challenges in a large-scale database-centric en-
vironment, we make two key contributions. First, we advocate
repeatedly rerunning the same commit to map out the most im-
pactful flaky tests, and demonstrate the effectiveness of using the
Flakiness Pipeline Pass Probability (FPPP) for measuring the level of
flakiness. Second, we identify a number of interventions targeting
root causes (e.g., redundant database background tasks, implicit ob-
ject disposals, and database pollution) through automated analysis
and selective disabling or refactoring of problematic tests.

Through our case study at Exact, we demonstrated how (1) re-
ducing redundant database tasks lowered the average number of
flaky tests by 40%, (2) explicit disposal rules addressed hidden cou-
pling, and (3) database sanity checks uncovered polluting tests that
created brittle interdependencies. Altogether, these measures lifted
Exact’s FPPP from 27% to 96%, facilitating a record-high release
rate and a notable decline in wasted resources.

Crucially, our findings underscore that flakiness is both multi-
faceted and combinatorial. Individual failures can arise from timing
issues, data leaks, improperly disposed resources, or overlapping
background tasks—and many of these factors only become prob-
lematic in combination. By rerunning the entire test suite on the
same commit, aggregating detailed error messages, and categoriz-
ing high-frequency failure types, organizations can more effectively
diagnose and remediate the underlying causes of flakiness. These
results are broadly applicable, offering a concrete framework for
measuring test instability, developing targeted fixes, and sustaining
a more reliable continuous integration pipeline.

Acknowledgments
This research was partially supported by the Dutch science foun-
dation NWO through the Vici “TestShift” grant (No. VI.C.182.032)
and conducted as part of George Vegelien’s master thesis [27]. We
thank Exact for supporting our research and especially all their
engineers who shared their insights with us throughout this study.

References
[1] Abdulrahman Alshammari, Christopher Morris, Michael Hilton, and Jonathan

Bell. 2021. FlakeFlagger: Predicting Flakiness Without Rerunning Tests. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1572–
1584. doi:10.1109/ICSE43902.2021.00140

[2] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In Pro-
ceedings of the 36th International Conference on Software Engineering (Hyderabad,
India) (ICSE 2014). Association for Computing Machinery, New York, NY, USA,
550–561. doi:10.1145/2568225.2568248

[3] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 433–444.
doi:10.1145/3180155.3180164

[4] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-
derstanding flaky tests: The developer’s perspective. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 830–840.
doi:10.1145/3338906.3338945

[5] Martin Fowler. 2011. Eradicating Non-Determinism in Tests. https://martinfowler.
com/articles/nonDeterminism.html Accessed 30 Jan 2025.

[6] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical Test Depen-
dency Detection. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). 1–11. doi:10.1109/ICST.2018.00011

[7] Maxime Gobert, Csaba Nagy, Henrique Rocha, Serge Demeyer, and Anthony
Cleve. 2023. Best practices of testing database manipulation code. Information
Systems 111 (2023), 102105. doi:10.1016/j.is.2022.102105

[8] Google. 2008. TotT: Avoiding Flakey Tests. https://testing.googleblog.com/2008/
04/tott-avoiding-flakey-tests.html Accessed 30 Jan 2025.

[9] Martin Gruber, Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An
Empirical Study of Flaky Tests in Python. In 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). 148–158. doi:10.1109/ICST49551.2021.
00026

[10] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A tool for detecting and debugging wrong assumptions on Java
API specifications. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 993–997. doi:10.
1145/2950290.2983932

[11] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable testing:
Detecting state-polluting tests to prevent test dependency. In Proceedings of the
2015 International Symposium on Software Testing and Analysis (Baltimore, MD,
USA) (ISSTA 2015). Association for Computing Machinery, New York, NY, USA,
223–233. doi:10.1145/2771783.2771793

[12] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif
Memon. 2020. Modeling and ranking flaky tests at Apple. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice (Seoul, South Korea) (ICSE-SEIP ’20). Association for Com-
puting Machinery, New York, NY, USA, 110–119. doi:10.1145/3377813.3381370

[13] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery,
New York, NY, USA, 101–111. doi:10.1145/3293882.3330570

[14] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A Framework for Detecting and Partially Classifying Flaky Tests. In 2019 12th
IEEE Conference on Software Testing, Validation and Verification (ICST). 312–322.
doi:10.1109/ICST.2019.00038

[15] Wing Lam, Stefan Winter, Anjiang Wei, Tao Xie, Darko Marinov, and Jonathan
Bell. 2020. A large-scale longitudinal study of flaky tests. Proc. ACM Program.
Lang. 4, OOPSLA, Article 202 (Nov. 2020), 29 pages. doi:10.1145/3428270

[16] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 643–653.
doi:10.1145/2635868.2635920

[17] JohnMicco. 2016. Flaky Tests at Google and HowWeMitigate Them. https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html Accessed 30
Jan 2025.

[18] John Micco. 2017. The state of continuous integration testing@ Google. In
ICST. https://www.aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf
Accessed 30 Jan 2025.

[19] John Micco and Atif Memon. 2016. How Flaky Tests in Continuous Integration.
Google Inc. https://www.youtube.com/watch?v=CrzpkF1-VsA Google Test
Automation Conference 2016.

[20] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding bugs by isolating
unit tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (Szeged, Hungary)
(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,
496–499. doi:10.1145/2025113.2025202

[21] Jason Palmer. 2019. Test Flakiness – Methods for identifying and dealing with
flaky tests. Spotify. https://engineering.atspotify.com/2019/11/test-flakiness-
methods-for-identifying-and-dealing-with-flaky-tests/ Spotfy R&DEngineering.
Accessed 30 Jan 2025.

[22] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 17 (Oct.
2021), 74 pages. doi:10.1145/3476105

[23] Maaz Hafeez Ur Rehman and Peter C. Rigby. 2021. Quantifying no-fault-found
test failures to prioritize inspection of flaky tests at Ericsson. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
1371–1380. doi:10.1145/3468264.3473930

[24] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)

https://doi.org/10.1109/ICSE43902.2021.00140
https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/3180155.3180164
https://doi.org/10.1145/3338906.3338945
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1016/j.is.2022.102105
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1109/ICST49551.2021.00026
https://doi.org/10.1145/2950290.2983932
https://doi.org/10.1145/2950290.2983932
https://doi.org/10.1145/2771783.2771793
https://doi.org/10.1145/3377813.3381370
https://doi.org/10.1145/3293882.3330570
https://doi.org/10.1109/ICST.2019.00038
https://doi.org/10.1145/3428270
https://doi.org/10.1145/2635868.2635920
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.aster.or.jp/conference/icst2017/program/jmicco-keynote.pdf
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://doi.org/10.1145/2025113.2025202
https://engineering.atspotify.com/2019/11/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://doi.org/10.1145/3476105
https://doi.org/10.1145/3468264.3473930


Addressing Test Flakiness: Practical Approaches in a Database-Reliant Industrial System ICSE-SEIP ’26, April 12–18, 2026, Rio de Janeiro, Brazil

(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
545–555. doi:10.1145/3338906.3338925

[25] Denini Silva, Martin Gruber, Satyajit Gokhale, Ellen Arteca, Alexi Turcotte,
Marcelo d’Amorim, Wing Lam, Stefan Winter, and Jonathan Bell. 2024. The
Effects of Computational Resources on Flaky Tests. IEEE Transactions on Software
Engineering 50, 12 (Dec 2024), 3104–3121. doi:10.1109/TSE.2024.3462251

[26] Amjed Tahir, Shawn Rasheed, Jens Dietrich, Negar Hashemi, and Lu Zhang. 2023.
Test flakiness’ causes, detection, impact and responses: A multivocal review.
Journal of Systems and Software 206 (2023), 111837. doi:10.1016/j.jss.2023.111837

[27] George Vegelien, Arie Deursen, Carolin Brandt, and Bas Graaf. 2025. Addressing
Test Flakiness: Practical Approaches in a Database-Reliant Industrial System.
https://resolver.tudelft.nl/uuid:ad279f6c-fbc6-4104-90b7-0a5b9e1f0088

[28] Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2021. Know You Neighbor: Fast Static Prediction of Test Flakiness. IEEE Access 9
(2021), 76119–76134. doi:10.1109/ACCESS.2021.3082424

[29] Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: A framework for
detecting and fixing Python order-dependent flaky tests. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 120–124. doi:10.1145/3510454.3516846

[30] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Computing
Machinery, New York, NY, USA, 385–396. doi:10.1145/2610384.2610404

[31] Wei Zheng, Guoliang Liu, Manqing Zhang, Xiang Chen, and Wenqiao Zhao.
2021. Research Progress of Flaky Tests. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). 639–646. doi:10.1109/
SANER50967.2021.00081

[32] Celal Ziftci and Diego Cavalcanti. 2020. De-Flake Your Tests : Automatically
Locating Root Causes of Flaky Tests in Code At Google. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 736–745. doi:10.1109/
ICSME46990.2020.00083

https://doi.org/10.1145/3338906.3338925
https://doi.org/10.1109/TSE.2024.3462251
https://doi.org/10.1016/j.jss.2023.111837
https://resolver.tudelft.nl/uuid:ad279f6c-fbc6-4104-90b7-0a5b9e1f0088
https://doi.org/10.1109/ACCESS.2021.3082424
https://doi.org/10.1145/3510454.3516846
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1109/SANER50967.2021.00081
https://doi.org/10.1109/SANER50967.2021.00081
https://doi.org/10.1109/ICSME46990.2020.00083
https://doi.org/10.1109/ICSME46990.2020.00083

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Industry Context at Exact
	2.2 Related Work

	3 Measuring Flakiness
	3.1 Pipeline Pass Probability
	3.2 Periodic Error Grouping
	3.3 Sporadic Flakiness

	4 Addressing Flakiness
	4.1 Minimizing Database Background Tasks
	4.2 Addressing Test Pollution

	5 Results
	5.1 (RQ1) Flakiness Patterns and Improvements Over Time
	5.2 (RQ2) Raising Test Stability by Suppressing DB Background Tasks
	5.3 (RQ3) Addressing Test Pollution

	6 Discussion
	6.1 A Handful of Tests Drive Pipeline Instability.
	6.2 Aggregated Metrics Accelerate High-Impact Flakiness Mitigations.
	6.3 Recommendations and Implications
	6.4 Threats to Validity
	6.5 Limitations and Future Directions

	7 Conclusion
	Acknowledgments
	References

